Abstract:Maternal mortality remains a significant global public health challenge. One promising approach to reducing maternal deaths occurring during facility-based childbirth is through early warning systems, which require the consistent monitoring of mothers' vital signs after giving birth. Wireless vital sign monitoring devices offer a labor-efficient solution for continuous monitoring, but their scarcity raises the critical question of how to allocate them most effectively. We devise an allocation algorithm for this problem by modeling it as a variant of the popular Restless Multi-Armed Bandit (RMAB) paradigm. In doing so, we identify and address novel, previously unstudied constraints unique to this domain, which render previous approaches for RMABs unsuitable and significantly increase the complexity of the learning and planning problem. To overcome these challenges, we adopt the popular Proximal Policy Optimization (PPO) algorithm from reinforcement learning to learn an allocation policy by training a policy and value function network. We demonstrate in simulations that our approach outperforms the best heuristic baseline by up to a factor of $4$.
Abstract:Comparing datasets is a fundamental task in machine learning, essential for various learning paradigms; from evaluating train and test datasets for model generalization to using dataset similarity for detecting data drift. While traditional notions of dataset distances offer principled measures of similarity, their utility has largely been assessed through prediction error minimization. However, in Predict-then-Optimize (PtO) frameworks, where predictions serve as inputs for downstream optimization tasks, model performance is measured through decision regret minimization rather than prediction error minimization. In this work, we (i) show that traditional dataset distances, which rely solely on feature and label dimensions, lack informativeness in the PtO context, and (ii) propose a new dataset distance that incorporates the impacts of downstream decisions. Our results show that this decision-aware dataset distance effectively captures adaptation success in PtO contexts, providing a PtO adaptation bound in terms of dataset distance. Empirically, we show that our proposed distance measure accurately predicts transferability across three different PtO tasks from the literature.