Abstract:By framing reinforcement learning as a sequence modeling problem, recent work has enabled the use of generative models, such as diffusion models, for planning. While these models are effective in predicting long-horizon state trajectories in deterministic environments, they face challenges in dynamic settings with moving obstacles. Effective collision avoidance demands continuous monitoring and adaptive decision-making. While replanning at every timestep could ensure safety, it introduces substantial computational overhead due to the repetitive prediction of overlapping state sequences -- a process that is particularly costly with diffusion models, known for their intensive iterative sampling procedure. We propose an adaptive generative planning approach that dynamically adjusts replanning frequency based on the uncertainty of action predictions. Our method minimizes the need for frequent, computationally expensive, and redundant replanning while maintaining robust collision avoidance performance. In experiments, we obtain a 13.5% increase in the mean trajectory length and a 12.7% increase in mean reward over long-horizon planning, indicating a reduction in collision rates and an improved ability to navigate the environment safely.
Abstract:Planning with generative models has emerged as an effective decision-making paradigm across a wide range of domains, including reinforcement learning and autonomous navigation. While continuous replanning at each timestep might seem intuitive because it allows decisions to be made based on the most recent environmental observations, it results in substantial computational challenges, primarily due to the complexity of the generative model's underlying deep learning architecture. Our work addresses this challenge by introducing a simple adaptive planning policy that leverages the generative model's ability to predict long-horizon state trajectories, enabling the execution of multiple actions consecutively without the need for immediate replanning. We propose to use the predictive uncertainty derived from a Deep Ensemble of inverse dynamics models to dynamically adjust the intervals between planning sessions. In our experiments conducted on locomotion tasks within the OpenAI Gym framework, we demonstrate that our adaptive planning policy allows for a reduction in replanning frequency to only about 10% of the steps without compromising the performance. Our results underscore the potential of generative modeling as an efficient and effective tool for decision-making.
Abstract:Affect is an emotional characteristic encompassing valence, arousal, and intensity, and is a crucial attribute for enabling authentic conversations. While existing text-to-speech (TTS) and speech-to-speech systems rely on strength embedding vectors and global style tokens to capture emotions, these models represent emotions as a component of style or represent them in discrete categories. We propose AffectEcho, an emotion translation model, that uses a Vector Quantized codebook to model emotions within a quantized space featuring five levels of affect intensity to capture complex nuances and subtle differences in the same emotion. The quantized emotional embeddings are implicitly derived from spoken speech samples, eliminating the need for one-hot vectors or explicit strength embeddings. Experimental results demonstrate the effectiveness of our approach in controlling the emotions of generated speech while preserving identity, style, and emotional cadence unique to each speaker. We showcase the language-independent emotion modeling capability of the quantized emotional embeddings learned from a bilingual (English and Chinese) speech corpus with an emotion transfer task from a reference speech to a target speech. We achieve state-of-art results on both qualitative and quantitative metrics.
Abstract:Population synthesis consists of generating synthetic but realistic representations of a target population of micro-agents for the purpose of behavioral modeling and simulation. We introduce a new framework based on copulas to generate synthetic data for a target population of which only the empirical marginal distributions are known by using a sample from another population sharing similar marginal dependencies. This makes it possible to include a spatial component in the generation of population synthesis and to combine various sources of information to obtain more realistic population generators. Specifically, we normalize the data and treat them as realizations of a given copula, and train a generative model on the normalized data before injecting the information on the marginals. We compare the copulas framework to IPF and to modern probabilistic approaches such as Bayesian networks, variational auto-encoders, and generative adversarial networks. We also illustrate on American Community Survey data that the method proposed allows to study the structure of the data at different geographical levels in a way that is robust to the peculiarities of the marginal distributions.