Abstract:Language Modelling has been a central part of Natural Language Processing for a very long time and in the past few years LSTM-based language models have been the go-to method for commercial language modeling. Recently, it has been shown that when looking at language modelling from a matrix factorization point of view, the final Softmax layer limits the expressiveness of the model, by putting an upper bound on the rank of the resulting matrix. Additionally, a new family of neural networks based called NeuralODEs, has been introduced as a continuous alternative to Residual Networks. Moreover, it has been shown that there is a connection between these models and Normalizing Flows. In this work we propose a new family of language models based on NeuralODEs and the continuous analogue of Normalizing Flows and manage to improve on some of the baselines.
Abstract:Image classification has been studied extensively, but there has been limited work in using unconventional, external guidance other than traditional image-label pairs for training. We present a set of methods for leveraging information about the semantic hierarchy embedded in class labels. We first inject label-hierarchy knowledge into an arbitrary CNN-based classifier and empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance. Taking a step further in this direction, we model more explicitly the label-label and label-image interactions using order-preserving embeddings governed by both Euclidean and hyperbolic geometries, prevalent in natural language, and tailor them to hierarchical image classification and representation learning. We empirically validate all the models on the hierarchical ETHEC dataset.