Microsoft Research
Abstract:We study efficient mechanisms for differentially private kernel density estimation (DP-KDE). Prior work for the Gaussian kernel described algorithms that run in time exponential in the number of dimensions $d$. This paper breaks the exponential barrier, and shows how the KDE can privately be approximated in time linear in $d$, making it feasible for high-dimensional data. We also present improved bounds for low-dimensional data. Our results are obtained through a general framework, which we term Locality Sensitive Quantization (LSQ), for constructing private KDE mechanisms where existing KDE approximation techniques can be applied. It lets us leverage several efficient non-private KDE methods -- like Random Fourier Features, the Fast Gauss Transform, and Locality Sensitive Hashing -- and ``privatize'' them in a black-box manner. Our experiments demonstrate that our resulting DP-KDE mechanisms are fast and accurate on large datasets in both high and low dimensions.
Abstract:Machine learning models perform well on several healthcare tasks and can help reduce the burden on the healthcare system. However, the lack of explainability is a major roadblock to their adoption in hospitals. \textit{How can the decision of an ML model be explained to a physician?} The explanations considered in this paper are counterfactuals (CFs), hypothetical scenarios that would have resulted in the opposite outcome. Specifically, time-series CFs are investigated, inspired by the way physicians converse and reason out decisions `I would have given the patient a vasopressor if their blood pressure was lower and falling'. Key properties of CFs that are particularly meaningful in clinical settings are outlined: physiological plausibility, relevance to the task and sparse perturbations. Past work on CF generation does not satisfy these properties, specifically plausibility in that realistic time-series CFs are not generated. A variational autoencoder (VAE)-based approach is proposed that captures these desired properties. The method produces CFs that improve on prior approaches quantitatively (more plausible CFs as evaluated by their likelihood w.r.t original data distribution, and 100$\times$ faster at generating CFs) and qualitatively (2$\times$ more plausible and relevant) as evaluated by three physicians.
Abstract:Traditional approaches to ranking in web search follow the paradigm of rank-by-score: a learned function gives each query-URL combination an absolute score and URLs are ranked according to this score. This paradigm ensures that if the score of one URL is better than another then one will always be ranked higher than the other. Scoring contradicts prior work in behavioral economics that showed that users' preferences between two items depend not only on the items but also on the presented alternatives. Thus, for the same query, users' preference between items A and B depends on the presence/absence of item C. We propose a new model of ranking, the Random Shopper Model, that allows and explains such behavior. In this model, each feature is viewed as a Markov chain over the items to be ranked, and the goal is to find a weighting of the features that best reflects their importance. We show that our model can be learned under the empirical risk minimization framework, and give an efficient learning algorithm. Experiments on commerce search logs demonstrate that our algorithm outperforms scoring-based approaches including regression and listwise ranking.
Abstract:Search engines today present results that are often oblivious to abrupt shifts in intent. For example, the query `independence day' usually refers to a US holiday, but the intent of this query abruptly changed during the release of a major film by that name. While no studies exactly quantify the magnitude of intent-shifting traffic, studies suggest that news events, seasonal topics, pop culture, etc account for 50% of all search queries. This paper shows that the signals a search engine receives can be used to both determine that a shift in intent has happened, as well as find a result that is now more relevant. We present a meta-algorithm that marries a classifier with a bandit algorithm to achieve regret that depends logarithmically on the number of query impressions, under certain assumptions. We provide strong evidence that this regret is close to the best achievable. Finally, via a series of experiments, we demonstrate that our algorithm outperforms prior approaches, particularly as the amount of intent-shifting traffic increases.