Abstract:We present WorldPose, a novel dataset for advancing research in multi-person global pose estimation in the wild, featuring footage from the 2022 FIFA World Cup. While previous datasets have primarily focused on local poses, often limited to a single person or in constrained, indoor settings, the infrastructure deployed for this sporting event allows access to multiple fixed and moving cameras in different stadiums. We exploit the static multi-view setup of HD cameras to recover the 3D player poses and motions with unprecedented accuracy given capture areas of more than 1.75 acres. We then leverage the captured players' motions and field markings to calibrate a moving broadcasting camera. The resulting dataset comprises more than 80 sequences with approx 2.5 million 3D poses and a total traveling distance of over 120 km. Subsequently, we conduct an in-depth analysis of the SOTA methods for global pose estimation. Our experiments demonstrate that WorldPose challenges existing multi-person techniques, supporting the potential for new research in this area and others, such as sports analysis. All pose annotations (in SMPL format), broadcasting camera parameters and footage will be released for academic research purposes.
Abstract:One of the main shortcomings of event data in football, which has been extensively used for analytics in the recent years, is that it still requires manual collection, thus limiting its availability to a reduced number of tournaments. In this work, we propose a computational framework to automatically extract football events using tracking data, namely the coordinates of all players and the ball. Our approach consists of two models: (1) the possession model evaluates which player was in possession of the ball at each time, as well as the distinct player configurations in the time intervals where the ball is not in play; (2) the event detection model relies on the changes in ball possession to determine in-game events, namely passes, shots, crosses, saves, receptions and interceptions, as well as set pieces. First, analyze the accuracy of tracking data for determining ball possession, as well as the accuracy of the time annotations for the manually collected events. Then, we benchmark the auto-detected events with a dataset of manually annotated events to show that in most categories the proposed method achieves $+90\%$ detection rate. Lastly, we demonstrate how the contextual information offered by tracking data can be leveraged to increase the granularity of auto-detected events, and exhibit how the proposed framework may be used to conduct a myriad of data analyses in football.