Abstract:High-resolution satellite imagery is a key element for many Earth monitoring applications. Satellites such as Sentinel-2 feature characteristics that are favorable for super-resolution algorithms such as aliasing and band-misalignment. Unfortunately the lack of reliable high-resolution (HR) ground truth limits the application of deep learning methods to this task. In this work we propose L1BSR, a deep learning-based method for single-image super-resolution and band alignment of Sentinel-2 L1B 10m bands. The method is trained with self-supervision directly on real L1B data by leveraging overlapping areas in L1B images produced by adjacent CMOS detectors, thus not requiring HR ground truth. Our self-supervised loss is designed to enforce the super-resolved output image to have all the bands correctly aligned. This is achieved via a novel cross-spectral registration network (CSR) which computes an optical flow between images of different spectral bands. The CSR network is also trained with self-supervision using an Anchor-Consistency loss, which we also introduce in this work. We demonstrate the performance of the proposed approach on synthetic and real L1B data, where we show that it obtains comparable results to supervised methods.
Abstract:Image resolution is an important criterion for many applications based on satellite imagery. In this work, we adapt a state-of-the-art kernel regression technique for smartphone camera burst super-resolution to satellites. This technique leverages the local structure of the image to optimally steer the fusion kernels, limiting blur in the final high-resolution prediction, denoising the image, and recovering details up to a zoom factor of 2. We extend this approach to the multi-exposure case to predict from a sequence of multi-exposure low-resolution frames a high-resolution and noise-free one. Experiments on both single and multi-exposure scenarios show the merits of the approach. Since the fusion is learning-free, the proposed method is ensured to not hallucinate details, which is crucial for many remote sensing applications.
Abstract:In this work, we study the problem of single-image super-resolution (SISR) of Sentinel-2 imagery. We show that thanks to its unique sensor specification, namely the inter-band shift and alias, that deep-learning methods are able to recover fine details. By training a model using a simple $L_1$ loss, results are free of hallucinated details. For this study, we build a dataset of pairs of images Sentinel-2/PlanetScope to train and evaluate our super-resolution (SR) model.
Abstract:Modern Earth observation satellites capture multi-exposure bursts of push-frame images that can be super-resolved via computational means. In this work, we propose a super-resolution method for such multi-exposure sequences, a problem that has received very little attention in the literature. The proposed method can handle the signal-dependent noise in the inputs, process sequences of any length, and be robust to inaccuracies in the exposure times. Furthermore, it can be trained end-to-end with self-supervision, without requiring ground truth high resolution frames, which makes it especially suited to handle real data. Central to our method are three key contributions: i) a base-detail decomposition for handling errors in the exposure times, ii) a noise-level-aware feature encoding for improved fusion of frames with varying signal-to-noise ratio and iii) a permutation invariant fusion strategy by temporal pooling operators. We evaluate the proposed method on synthetic and real data and show that it outperforms by a significant margin existing single-exposure approaches that we adapted to the multi-exposure case.
Abstract:The PROBA-V Super-Resolution challenge distributes real low-resolution image series and corresponding high-resolution targets to advance research on Multi-Image Super Resolution (MISR) for satellite images. However, in the PROBA-V dataset the low-resolution image corresponding to the high-resolution target is not identified. We argue that in doing so, the challenge ranks the proposed methods not only by their MISR performance, but mainly by the heuristics used to guess which image in the series is the most similar to the high-resolution target. We demonstrate this by improving the performance obtained by the two winners of the challenge only by using a different reference image, which we compute following a simple heuristic. Based on this, we propose PROBA-V-REF a variant of the PROBA-V dataset, in which the reference image in the low-resolution series is provided, and show that the ranking between the methods changes in this setting. This is relevant to many practical use cases of MISR where the goal is to super-resolve a specific image of the series, i.e. the reference is known. The proposed PROBA-V-REF should better reflect the performance of the different methods for this reference-aware MISR problem.