Abstract:Effective asynchronous planning, or the ability to efficiently reason and plan over states and actions that must happen in parallel or sequentially, is essential for agents that must account for time delays, reason over diverse long-horizon tasks, and collaborate with other agents. While large language model (LLM) agents show promise in high-level task planning, current benchmarks focus primarily on short-horizon tasks and do not evaluate such asynchronous planning capabilities. We introduce Robotouille, a challenging benchmark environment designed to test LLM agents' ability to handle long-horizon asynchronous scenarios. Our synchronous and asynchronous datasets capture increasingly complex planning challenges that go beyond existing benchmarks, requiring agents to manage overlapping tasks and interruptions. Our results show that ReAct (gpt4-o) achieves 47% on synchronous tasks but only 11% on asynchronous tasks, highlighting significant room for improvement. We further analyze failure modes, demonstrating the need for LLM agents to better incorporate long-horizon feedback and self-audit their reasoning during task execution. Code is available at https://github.com/portal-cornell/robotouille.
Abstract:Home robots performing personalized tasks must adeptly balance user preferences with environmental affordances. We focus on organization tasks within constrained spaces, such as arranging items into a refrigerator, where preferences for placement collide with physical limitations. The robot must infer user preferences based on a small set of demonstrations, which is easier for users to provide than extensively defining all their requirements. While recent works use Large Language Models (LLMs) to learn preferences from user demonstrations, they encounter two fundamental challenges. First, there is inherent ambiguity in interpreting user actions, as multiple preferences can often explain a single observed behavior. Second, not all user preferences are practically feasible due to geometric constraints in the environment. To address these challenges, we introduce APRICOT, a novel approach that merges LLM-based Bayesian active preference learning with constraint-aware task planning. APRICOT refines its generated preferences by actively querying the user and dynamically adapts its plan to respect environmental constraints. We evaluate APRICOT on a dataset of diverse organization tasks and demonstrate its effectiveness in real-world scenarios, showing significant improvements in both preference satisfaction and plan feasibility. The project website is at https://portal-cornell.github.io/apricot/
Abstract:We present MOSAIC, a modular architecture for home robots to perform complex collaborative tasks, such as cooking with everyday users. MOSAIC tightly collaborates with humans, interacts with users using natural language, coordinates multiple robots, and manages an open vocabulary of everyday objects. At its core, MOSAIC employs modularity: it leverages multiple large-scale pre-trained models for general tasks like language and image recognition, while using streamlined modules designed for task-specific control. We extensively evaluate MOSAIC on 60 end-to-end trials where two robots collaborate with a human user to cook a combination of 6 recipes. We also extensively test individual modules with 180 episodes of visuomotor picking, 60 episodes of human motion forecasting, and 46 online user evaluations of the task planner. We show that MOSAIC is able to efficiently collaborate with humans by running the overall system end-to-end with a real human user, completing 68.3% (41/60) collaborative cooking trials of 6 different recipes with a subtask completion rate of 91.6%. Finally, we discuss the limitations of the current system and exciting open challenges in this domain. The project's website is at https://portal-cornell.github.io/MOSAIC/