Abstract:Goal-oriented de novo molecule design, namely generating molecules with specific property or substructure constraints, is a crucial yet challenging task in drug discovery. Existing methods, such as Bayesian optimization and reinforcement learning, often require training multiple property predictors and struggle to incorporate substructure constraints. Inspired by the success of Large Language Models (LLMs) in text generation, we propose ChatMol, a novel approach that leverages LLMs for molecule design across diverse constraint settings. Initially, we crafted a molecule representation compatible with LLMs and validated its efficacy across multiple online LLMs. Afterwards, we developed specific prompts geared towards diverse constrained molecule generation tasks to further fine-tune current LLMs while integrating feedback learning derived from property prediction. Finally, to address the limitations of LLMs in numerical recognition, we referred to the position encoding method and incorporated additional encoding for numerical values within the prompt. Experimental results across single-property, substructure-property, and multi-property constrained tasks demonstrate that ChatMol consistently outperforms state-of-the-art baselines, including VAE and RL-based methods. Notably, in multi-objective binding affinity maximization task, ChatMol achieves a significantly lower KD value of 0.25 for the protein target ESR1, while maintaining the highest overall performance, surpassing previous methods by 4.76%. Meanwhile, with numerical enhancement, the Pearson correlation coefficient between the instructed property values and those of the generated molecules increased by up to 0.49. These findings highlight the potential of LLMs as a versatile framework for molecule generation, offering a promising alternative to traditional latent space and RL-based approaches.
Abstract:Emotion Cause Extraction in Conversations (ECEC) aims to extract the utterances which contain the emotional cause in conversations. Most prior research focuses on modelling conversational contexts with sequential encoding, ignoring the informative interactions between utterances and conversational-specific features for ECEC. In this paper, we investigate the importance of discourse structures in handling utterance interactions and conversationspecific features for ECEC. To this end, we propose a discourse-aware model (DAM) for this task. Concretely, we jointly model ECEC with discourse parsing using a multi-task learning (MTL) framework and explicitly encode discourse structures via gated graph neural network (gated GNN), integrating rich utterance interaction information to our model. In addition, we use gated GNN to further enhance our ECEC model with conversation-specific features. Results on the benchmark corpus show that DAM outperform the state-of-theart (SOTA) systems in the literature. This suggests that the discourse structure may contain a potential link between emotional utterances and their corresponding cause expressions. It also verifies the effectiveness of conversationalspecific features. The codes of this paper will be available on GitHub.
Abstract:Named entity recognition (NER) remains challenging when entity mentions can be discontinuous. Existing methods break the recognition process into several sequential steps. In training, they predict conditioned on the golden intermediate results, while at inference relying on the model output of the previous steps, which introduces exposure bias. To solve this problem, we first construct a segment graph for each sentence, in which each node denotes a segment (a continuous entity on its own, or a part of discontinuous entities), and an edge links two nodes that belong to the same entity. The nodes and edges can be generated respectively in one stage with a grid tagging scheme and learned jointly using a novel architecture named Mac. Then discontinuous NER can be reformulated as a non-parametric process of discovering maximal cliques in the graph and concatenating the spans in each clique. Experiments on three benchmarks show that our method outperforms the state-of-the-art (SOTA) results, with up to 3.5 percentage points improvement on F1, and achieves 5x speedup over the SOTA model.
Abstract:While part-of-speech (POS) tagging and dependency parsing are observed to be closely related, existing work on joint modeling with manually crafted feature templates suffers from the feature sparsity and incompleteness problems. In this paper, we propose an approach to joint POS tagging and dependency parsing using transition-based neural networks. Three neural network based classifiers are designed to resolve shift/reduce, tagging, and labeling conflicts. Experiments show that our approach significantly outperforms previous methods for joint POS tagging and dependency parsing across a variety of natural languages.