Abstract:Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparse views (<10). In contrast to existing approaches that pursue top-down prediction of global parametrizations of camera extrinsics, we propose a distributed representation of camera pose that treats a camera as a bundle of rays. This representation allows for a tight coupling with spatial image features improving pose precision. We observe that this representation is naturally suited for set-level level transformers and develop a regression-based approach that maps image patches to corresponding rays. To capture the inherent uncertainties in sparse-view pose inference, we adapt this approach to learn a denoising diffusion model which allows us to sample plausible modes while improving performance. Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D while generalizing to unseen object categories and in-the-wild captures.
Abstract:We present our method for transferring style from any arbitrary image(s) to object(s) within a 3D scene. Our primary objective is to offer more control in 3D scene stylization, facilitating the creation of customizable and stylized scene images from arbitrary viewpoints. To achieve this, we propose a novel approach that incorporates nearest neighborhood-based loss, allowing for flexible 3D scene reconstruction while effectively capturing intricate style details and ensuring multi-view consistency.
Abstract:We present GAZED- eye GAZe-guided EDiting for videos captured by a solitary, static, wide-angle and high-resolution camera. Eye-gaze has been effectively employed in computational applications as a cue to capture interesting scene content; we employ gaze as a proxy to select shots for inclusion in the edited video. Given the original video, scene content and user eye-gaze tracks are combined to generate an edited video comprising cinematically valid actor shots and shot transitions to generate an aesthetic and vivid representation of the original narrative. We model cinematic video editing as an energy minimization problem over shot selection, whose constraints capture cinematographic editing conventions. Gazed scene locations primarily determine the shots constituting the edited video. Effectiveness of GAZED against multiple competing methods is demonstrated via a psychophysical study involving 12 users and twelve performance videos.
Abstract:We present a novel approach to optimally retarget videos for varied displays with differing aspect ratios by preserving salient scene content discovered via eye tracking. Our algorithm performs editing with cut, pan and zoom operations by optimizing the path of a cropping window within the original video while seeking to (i) preserve salient regions, and (ii) adhere to the principles of cinematography. Our approach is (a) content agnostic as the same methodology is employed to re-edit a wide-angle video recording or a close-up movie sequence captured with a static or moving camera, and (b) independent of video length and can in principle re-edit an entire movie in one shot. Our algorithm consists of two steps. The first step employs gaze transition cues to detect time stamps where new cuts are to be introduced in the original video via dynamic programming. A subsequent step optimizes the cropping window path (to create pan and zoom effects), while accounting for the original and new cuts. The cropping window path is designed to include maximum gaze information, and is composed of piecewise constant, linear and parabolic segments. It is obtained via L(1) regularized convex optimization which ensures a smooth viewing experience. We test our approach on a wide variety of videos and demonstrate significant improvement over the state-of-the-art, both in terms of computational complexity and qualitative aspects. A study performed with 16 users confirms that our approach results in a superior viewing experience as compared to gaze driven re-editing and letterboxing methods, especially for wide-angle static camera recordings.