Stanford University
Abstract:We introduce VidLPRO, a novel video-language (VL) pre-training framework designed specifically for robotic and laparoscopic surgery. While existing surgical VL models primarily rely on contrastive learning, we propose a more comprehensive approach to capture the intricate temporal dynamics and align video with language. VidLPRO integrates video-text contrastive learning, video-text matching, and masked language modeling objectives to learn rich VL representations. To support this framework, we present GenSurg+, a carefully curated dataset derived from GenSurgery, comprising 17k surgical video clips paired with captions generated by GPT-4 using transcripts extracted by the Whisper model. This dataset addresses the need for large-scale, high-quality VL data in the surgical domain. Extensive experiments on benchmark datasets, including Cholec80 and AutoLaparo, demonstrate the efficacy of our approach. VidLPRO achieves state-of-the-art performance in zero-shot surgical phase recognition, significantly outperforming existing surgical VL models such as SurgVLP and HecVL. Our model demonstrates improvements of up to 21.5\% in accuracy and 15.7% in F1 score, setting a new benchmark in the field. Notably, VidLPRO exhibits robust performance even with single-frame inference, while effectively scaling with increased temporal context. Ablation studies reveal the impact of frame sampling strategies on model performance and computational efficiency. These results underscore VidLPRO's potential as a foundation model for surgical video understanding.
Abstract:Early detection of autism, a neurodevelopmental disorder marked by social communication challenges, is crucial for timely intervention. Recent advancements have utilized naturalistic home videos captured via the mobile application GuessWhat. Through interactive games played between children and their guardians, GuessWhat has amassed over 3,000 structured videos from 382 children, both diagnosed with and without Autism Spectrum Disorder (ASD). This collection provides a robust dataset for training computer vision models to detect ASD-related phenotypic markers, including variations in emotional expression, eye contact, and head movements. We have developed a protocol to curate high-quality videos from this dataset, forming a comprehensive training set. Utilizing this set, we trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%, respectively. To boost diagnostic accuracy, we applied late fusion techniques to create ensemble models, improving the overall AUC to 90%. This approach also yielded more equitable results across different genders and age groups. Our methodology offers a significant step forward in the early detection of ASD by potentially reducing the reliance on subjective assessments and making early identification more accessibly and equitable.
Abstract:In this technical report, we introduce TempT, a novel method for test time adaptation on videos by ensuring temporal coherence of predictions across sequential frames. TempT is a powerful tool with broad applications in computer vision tasks, including facial expression recognition (FER) in videos. We evaluate TempT's performance on the AffWild2 dataset as part of the Expression Classification Challenge at the 5th Workshop and Competition on Affective Behavior Analysis in the wild (ABAW). Our approach focuses solely on the unimodal visual aspect of the data and utilizes a popular 2D CNN backbone, in contrast to larger sequential or attention based models. Our experimental results demonstrate that TempT has competitive performance in comparison to previous years reported performances, and its efficacy provides a compelling proof of concept for its use in various real world applications.
Abstract:Emotions play an essential role in human communication. Developing computer vision models for automatic recognition of emotion expression can aid in a variety of domains, including robotics, digital behavioral healthcare, and media analytics. There are three types of emotional representations which are traditionally modeled in affective computing research: Action Units, Valence Arousal (VA), and Categorical Emotions. As part of an effort to move beyond these representations towards more fine-grained labels, we describe our submission to the newly introduced Emotional Reaction Intensity (ERI) Estimation challenge in the 5th competition for Affective Behavior Analysis in-the-Wild (ABAW). We developed four deep neural networks trained in the visual domain and a multimodal model trained with both visual and audio features to predict emotion reaction intensity. Our best performing model on the Hume-Reaction dataset achieved an average Pearson correlation coefficient of 0.4080 on the test set using a pre-trained ResNet50 model. This work provides a first step towards the development of production-grade models which predict emotion reaction intensities rather than discrete emotion categories.