Abstract:In continual time series analysis using neural networks, catastrophic forgetting (CF) of previously learned models when training on new data domains has always been a significant challenge. This problem is especially challenging in vehicle estimation and control, where new information is sequentially introduced to the model. Unfortunately, existing work on continual learning has not sufficiently addressed the adverse effects of catastrophic forgetting in time series analysis, particularly in multivariate output environments. In this paper, we present EM-ReSeleCT (Efficient Multivariate Representative Selection for Continual Learning in Time Series Tasks), an enhanced approach designed to handle continual learning in multivariate environments. Our approach strategically selects representative subsets from old and historical data and incorporates memory-based continual learning techniques with an improved optimization algorithm to adapt the pre-trained model on new information while preserving previously acquired information. Additionally, we develop a sequence-to-sequence transformer model (autoregressive model) specifically designed for vehicle state estimation. Moreover, we propose an uncertainty quantification framework using conformal prediction to assess the sensitivity of the memory size and to showcase the robustness of the proposed method. Experimental results from tests on an electric Equinox vehicle highlight the superiority of our method in continually learning new information while retaining prior knowledge, outperforming state-of-the-art continual learning methods. Furthermore, EM-ReSeleCT significantly reduces training time, a critical advantage in continual learning applications.
Abstract:Resource allocation and scheduling in multi-agent systems present challenges due to complex interactions and decentralization. This survey paper provides a comprehensive analysis of distributed algorithms for addressing the distributed resource allocation (DRA) problem over multi-agent systems. It covers a significant area of research at the intersection of optimization, multi-agent systems, and distributed consensus-based computing. The paper begins by presenting a mathematical formulation of the DRA problem, establishing a solid foundation for further exploration. Real-world applications of DRA in various domains are examined to underscore the importance of efficient resource allocation, and relevant distributed optimization formulations are presented. The survey then delves into existing solutions for DRA, encompassing linear, nonlinear, primal-based, and dual-formulation-based approaches. Furthermore, this paper evaluates the features and properties of DRA algorithms, addressing key aspects such as feasibility, convergence rate, and network reliability. The analysis of mathematical foundations, diverse applications, existing solutions, and algorithmic properties contributes to a broader comprehension of the challenges and potential solutions for this domain.
Abstract:We propose a distributed (single) target tracking scheme based on networked estimation and consensus algorithms over static sensor networks. The tracking part is based on linear time-difference-of-arrival (TDOA) measurement proposed in our previous works. This paper, in particular, develops delay-tolerant distributed filtering solutions over sparse data-transmission networks. We assume general arbitrary heterogeneous delays at different links. This may occur in many realistic large-scale applications where the data-sharing between different nodes is subject to latency due to communication-resource constraints or large spatially distributed sensor networks. The solution we propose in this work shows improved performance (verified by both theory and simulations) in such scenarios. Another privilege of such distributed schemes is the possibility to add localized fault-detection and isolation (FDI) strategies along with survivable graph-theoretic design, which opens many follow-up venues to this research. To our best knowledge no such delay-tolerant distributed linear algorithm is given in the existing distributed tracking literature.