Abstract:Making decent multi-lingual sentence representations is critical to achieve high performances in cross-lingual downstream tasks. In this work, we propose a novel method to align multi-lingual embeddings based on the similarity of sentences measured by a pre-trained mono-lingual embedding model. Given translation sentence pairs, we train a multi-lingual model in a way that the similarity between cross-lingual embeddings follows the similarity of sentences measured at the mono-lingual teacher model. Our method can be considered as contrastive learning with soft labels defined as the similarity between sentences. Our experimental results on five languages show that our contrastive loss with soft labels far outperforms conventional contrastive loss with hard labels in various benchmarks for bitext mining tasks and STS tasks. In addition, our method outperforms existing multi-lingual embeddings including LaBSE, for Tatoeba dataset. The code is available at https://github.com/YAI12xLinq-B/IMASCL
Abstract:In decision-making problem under uncertainty, predicting unknown parameters is often considered independent of the optimization part. Decision-focused Learning (DFL) is a task-oriented framework to integrate prediction and optimization by adapting predictive model to give better decision for the corresponding task. Here, an inevitable challenge arises when computing gradients of the optimal decision with respect to the parameters. Existing researches cope this issue by smoothly reforming surrogate optimization or construct surrogate loss function that mimic task loss. However, they are applied to restricted optimization domain or build functions in a local manner leading a large computational time. In this paper, we propose Input Convex Loss Network (ICLN), a novel global surrogate loss which can be implemented in a general DFL paradigm. ICLN learns task loss via Input Convex Neural Networks which is guaranteed to be convex for some inputs, while keeping the global structure for the other inputs. This enables ICLN to admit general DFL through only a single surrogate loss without any sense for choosing appropriate parametric forms. We confirm effectiveness and flexibility of ICLN by evaluating our proposed model with three stochastic decision-making problems.
Abstract:Do people from different cultural backgrounds perceive the mood in music the same way? How closely do human ratings across different cultures approximate automatic mood detection algorithms that are often trained on corpora of predominantly Western popular music? Analyzing 166 participants responses from Brazil, South Korea, and the US, we examined the similarity between the ratings of nine categories of perceived moods in music and estimated their alignment with four popular mood detection algorithms. We created a dataset of 360 recent pop songs drawn from major music charts of the countries and constructed semantically identical mood descriptors across English, Korean, and Portuguese languages. Multiple participants from the three countries rated their familiarity, preference, and perceived moods for a given song. Ratings were highly similar within and across cultures for basic mood attributes such as sad, cheerful, and energetic. However, we found significant cross-cultural differences for more complex characteristics such as dreamy and love. To our surprise, the results of mood detection algorithms were uniformly correlated across human ratings from all three countries and did not show a detectable bias towards any particular culture. Our study thus suggests that the mood detection algorithms can be considered as an objective measure at least within the popular music context.