Abstract:Fever of unknown origin FUO remains a diagnostic challenge. MedMimic is introduced as a multimodal framework inspired by real-world diagnostic processes. It uses pretrained models such as DINOv2, Vision Transformer, and ResNet-18 to convert high-dimensional 18F-FDG PET/CT imaging into low-dimensional, semantically meaningful features. A learnable self-attention-based fusion network then integrates these imaging features with clinical data for classification. Using 416 FUO patient cases from Sichuan University West China Hospital from 2017 to 2023, the multimodal fusion classification network MFCN achieved macro-AUROC scores ranging from 0.8654 to 0.9291 across seven tasks, outperforming conventional machine learning and single-modality deep learning methods. Ablation studies and five-fold cross-validation further validated its effectiveness. By combining the strengths of pretrained large models and deep learning, MedMimic offers a promising solution for disease classification.
Abstract:This preliminary white paper proposes a novel 8-bit floating-point data format HiFloat8 (abbreviated as HiF8) for deep learning. HiF8 features tapered precision. For normal value encoding, it provides 7 exponent values with 3-bit mantissa, 8 exponent values with 2-bit mantissa, and 16 exponent values with 1-bit mantissa. For denormal value encoding, it extends the dynamic range by 7 extra powers of 2, from 31 to 38 binades (notice that FP16 covers 40 binades). Meanwhile, HiF8 encodes all the special values except that positive zero and negative zero are represented by only one bit-pattern. Thanks to the better balance between precision and dynamic range, HiF8 can be simultaneously used in both forward and backward passes of AI training. In this paper, we will describe the definition and rounding methods of HiF8, as well as the tentative training and inference solutions. To demonstrate the efficacy of HiF8, massive simulation results on various neural networks, including traditional neural networks and large language models (LLMs), will also be presented.