Abstract:Object detection and semantic segmentation are both scene understanding tasks yet they differ in data structure and information level. Object detection requires box coordinates for object instances while semantic segmentation requires pixel-wise class labels. Making use of one task's information to train the other would be beneficial for multi-task partially supervised learning where each training example is annotated only for a single task, having the potential to expand training sets with different-task datasets. This paper studies various weak losses for partially annotated data in combination with existing supervised losses. We propose Box-for-Mask and Mask-for-Box strategies, and their combination BoMBo, to distil necessary information from one task annotations to train the other. Ablation studies and experimental results on VOC and COCO datasets show favorable results for the proposed idea. Source code and data splits can be found at https://github.com/lhoangan/multas.
Abstract:Regular patterns of vegetation are considered widespread landscapes, although their global extent has never been estimated. Among them, spotted landscapes are of particular interest in the context of climate change. Indeed, regularly spaced vegetation spots in semi-arid shrublands result from extreme resource depletion and prefigure catastrophic shift of the ecosystem to a homogeneous desert, while termite mounds also producing spotted landscapes were shown to increase robustness to climate change. Yet, their identification at large scale calls for automatic methods, for instance using the popular deep learning framework, able to cope with a vast amount of remote sensing data, e.g., optical satellite imagery. In this paper, we tackle this problem and benchmark some state-of-the-art deep networks on several landscapes and geographical areas. Despite the promising results we obtained, we found that more research is needed to be able to map automatically these earth mounds from space.
Abstract:This paper aims to conduct a comparative analysis of contemporary Variational Autoencoder (VAE) architectures employed in anomaly detection, elucidating their performance and behavioral characteristics within this specific task. The architectural configurations under consideration encompass the original VAE baseline, the VAE with a Gaussian Random Field prior (VAE-GRF), and the VAE incorporating a vision transformer (ViT-VAE). The findings reveal that ViT-VAE exhibits exemplary performance across various scenarios, whereas VAE-GRF may necessitate more intricate hyperparameter tuning to attain its optimal performance state. Additionally, to mitigate the propensity for over-reliance on results derived from the widely used MVTec dataset, this paper leverages the recently-public MiAD dataset for benchmarking. This deliberate inclusion seeks to enhance result competitiveness by alleviating the impact of domain-specific models tailored exclusively for MVTec, thereby contributing to a more robust evaluation framework. Codes is available at https://github.com/endtheme123/VAE-compare.git.
Abstract:Partial multi-task learning where training examples are annotated for one of the target tasks is a promising idea in remote sensing as it allows combining datasets annotated for different tasks and predicting more tasks with fewer network parameters. The na\"ive approach to partial multi-task learning is sub-optimal due to the lack of all-task annotations for learning joint representations. This paper proposes using knowledge distillation to replace the need of ground truths for the alternate task and enhance the performance of such approach. Experiments conducted on the public ISPRS 2D Semantic Labeling Contest dataset show the effectiveness of the proposed idea on partial multi-task learning for semantic tasks including object detection and semantic segmentation in aerial images.
Abstract:Ship detection from satellite imagery using Deep Learning (DL) is an indispensable solution for maritime surveillance. However, applying DL models trained on one dataset to others having differences in spatial resolution and radiometric features requires many adjustments. To overcome this issue, this paper focused on the DL models trained on datasets that consist of different optical images and a combination of radar and optical data. When dealing with a limited number of training images, the performance of DL models via this approach was satisfactory. They could improve 5-20% of average precision, depending on the optical images tested. Likewise, DL models trained on the combined optical and radar dataset could be applied to both optical and radar images. Our experiments showed that the models trained on an optical dataset could be used for radar images, while those trained on a radar dataset offered very poor scores when applied to optical images.
Abstract:In the realm of Federated Learning (FL) applied to remote sensing image classification, this study introduces and assesses several innovative communication strategies. Our exploration includes feature-centric communication, pseudo-weight amalgamation, and a combined method utilizing both weights and features. Experiments conducted on two public scene classification datasets unveil the effectiveness of these strategies, showcasing accelerated convergence, heightened privacy, and reduced network information exchange. This research provides valuable insights into the implications of feature-centric communication in FL, offering potential applications tailored for remote sensing scenarios.
Abstract:Multi-task partially annotated data where each data point is annotated for only a single task are potentially helpful for data scarcity if a network can leverage the inter-task relationship. In this paper, we study the joint learning of object detection and semantic segmentation, the two most popular vision problems, from multi-task data with partial annotations. Extensive experiments are performed to evaluate each task performance and explore their complementarity when a multi-task network cannot optimize both tasks simultaneously. We propose employing knowledge distillation to leverage joint-task optimization. The experimental results show favorable results for multi-task learning and knowledge distillation over single-task learning and even full supervision scenario. All code and data splits are available at https://github.com/lhoangan/multas
Abstract:Self-training allows a network to learn from the predictions of a more complicated model, thus often requires well-trained teacher models and mixture of teacher-student data while multi-task learning jointly optimizes different targets to learn salient interrelationship and requires multi-task annotations for each training example. These frameworks, despite being particularly data demanding have potentials for data exploitation if such assumptions can be relaxed. In this paper, we compare self-training object detection under the deficiency of teacher training data where students are trained on unseen examples by the teacher, and multi-task learning with partially annotated data, i.e. single-task annotation per training example. Both scenarios have their own limitation but potentially helpful with limited annotated data. Experimental results show the improvement of performance when using a weak teacher with unseen data for training a multi-task student. Despite the limited setup we believe the experimental results show the potential of multi-task knowledge distillation and self-training, which could be beneficial for future study. Source code is at https://lhoangan.github.io/multas.
Abstract:Wildfire detection using satellite images is a widely studied task in remote sensing with many applications to fire delineation and mapping. Recently, deep learning methods have become a scalable solution to automate this task, especially in the field of unsupervised learning where no training data is available. This is particularly important in the context of emergency risk monitoring where fast and effective detection is needed, generally based on high-resolution satellite data. Among various approaches, Anomaly Detection (AD) appears to be highly potential thanks to its broad applications in computer vision, medical imaging, as well as remote sensing. In this work, we build upon the framework of Vector Quantized Variational Autoencoder (VQ-VAE), a popular reconstruction-based AD method with discrete latent spaces, to perform unsupervised burnt area extraction. We integrate VQ-VAE into an end-to-end framework with an intensive post-processing step using dedicated vegetation, water and brightness indexes. Our experiments conducted on high-resolution SPOT-6/7 images provide promising results of the proposed technique, showing its high potential in future research on unsupervised burnt area extraction.
Abstract:Knowledge distillation, a well-known model compression technique, is an active research area in both computer vision and remote sensing communities. In this paper, we evaluate in a remote sensing context various off-the-shelf object detection knowledge distillation methods which have been originally developed on generic computer vision datasets such as Pascal VOC. In particular, methods covering both logit mimicking and feature imitation approaches are applied for vehicle detection using the well-known benchmarks such as xView and VEDAI datasets. Extensive experiments are performed to compare the relative performance and interrelationships of the methods. Experimental results show high variations and confirm the importance of result aggregation and cross validation on remote sensing datasets.