Abstract:APT (Advanced Persistent Threat) with the characteristics of persistence, stealth, and diversity is one of the greatest threats against cyber-infrastructure. As a countermeasure, existing studies leverage provenance graphs to capture the complex relations between system entities in a host for effective APT detection. In addition to detecting single attack events as most existing work does, understanding the tactics / techniques (e.g., Kill-Chain, ATT&CK) applied to organize and accomplish the APT attack campaign is more important for security operations. Existing studies try to manually design a set of rules to map low-level system events to high-level APT tactics / techniques. However, the rule based methods are coarse-grained and lack generalization ability, thus they can only recognize APT tactics and cannot identify fine-grained APT techniques and mutant APT attacks. In this paper, we propose TREC, the first attempt to recognize APT tactics / techniques from provenance graphs by exploiting deep learning techniques. To address the "needle in a haystack" problem, TREC segments small and compact subgraphs covering individual APT technique instances from a large provenance graph based on a malicious node detection model and a subgraph sampling algorithm. To address the "training sample scarcity" problem, TREC trains the APT tactic / technique recognition model in a few-shot learning manner by adopting a Siamese neural network. We evaluate TREC based on a customized dataset collected and made public by our team. The experiment results show that TREC significantly outperforms state-of-the-art systems in APT tactic recognition and TREC can also effectively identify APT techniques.
Abstract:A cyber-attack is a malicious attempt by experienced hackers to breach the target information system. Usually, the cyber-attacks are characterized as hybrid TTPs (Tactics, Techniques, and Procedures) and long-term adversarial behaviors, making the traditional intrusion detection methods ineffective. Most existing cyber-attack detection systems are implemented based on manually designed rules by referring to domain knowledge (e.g., threat models, threat intelligences). However, this process is lack of intelligence and generalization ability. Aiming at this limitation, this paper proposes an intelligent cyber-attack detection method based on provenance data. To effective and efficient detect cyber-attacks from a huge number of system events in the provenance data, we firstly model the provenance data by a heterogeneous graph to capture the rich context information of each system entities (e.g., process, file, socket, etc.), and learns a semantic vector representation for each system entity. Then, we perform online cyber-attack detection by sampling a small and compact local graph from the heterogeneous graph, and classifying the key system entities as malicious or benign. We conducted a series of experiments on two provenance datasets with real cyber-attacks. The experiment results show that the proposed method outperforms other learning based detection models, and has competitive performance against state-of-the-art rule based cyber-attack detection systems.
Abstract:Unsupervised user adaptation aligns the feature distributions of the data from training users and the new user, so a well-trained wearable human activity recognition (WHAR) model can be well adapted to the new user. With the development of wearable sensors, multiple wearable sensors based WHAR is gaining more and more attention. In order to address the challenge that the transferabilities of different sensors are different, we propose SALIENCE (unsupervised user adaptation model for multiple wearable sensors based human activity recognition) model. It aligns the data of each sensor separately to achieve local alignment, while uniformly aligning the data of all sensors to ensure global alignment. In addition, an attention mechanism is proposed to focus the activity classifier of SALIENCE on the sensors with strong feature discrimination and well distribution alignment. Experiments are conducted on two public WHAR datasets, and the experimental results show that our model can yield a competitive performance.
Abstract:Accurately forecasting air quality is critical to protecting general public from lung and heart diseases. This is a challenging task due to the complicated interactions among distinct pollution sources and various other influencing factors. Existing air quality forecasting methods cannot effectively model the diffusion processes of air pollutants between cities and monitoring stations, which may suddenly deteriorate the air quality of a region. In this paper, we propose HighAir, i.e., a hierarchical graph neural network-based air quality forecasting method, which adopts an encoder-decoder architecture and considers complex air quality influencing factors, e.g., weather and land usage. Specifically, we construct a city-level graph and station-level graphs from a hierarchical perspective, which can consider city-level and station-level patterns, respectively. We design two strategies, i.e., upper delivery and lower updating, to implement the inter-level interactions, and introduce message passing mechanism to implement the intra-level interactions. We dynamically adjust edge weights based on wind direction to model the correlations between dynamic factors and air quality. We compare HighAir with the state-of-the-art air quality forecasting methods on the dataset of Yangtze River Delta city group, which covers 10 major cities within 61,500 km2. The experimental results show that HighAir significantly outperforms other methods.