Abstract:APT (Advanced Persistent Threat) with the characteristics of persistence, stealth, and diversity is one of the greatest threats against cyber-infrastructure. As a countermeasure, existing studies leverage provenance graphs to capture the complex relations between system entities in a host for effective APT detection. In addition to detecting single attack events as most existing work does, understanding the tactics / techniques (e.g., Kill-Chain, ATT&CK) applied to organize and accomplish the APT attack campaign is more important for security operations. Existing studies try to manually design a set of rules to map low-level system events to high-level APT tactics / techniques. However, the rule based methods are coarse-grained and lack generalization ability, thus they can only recognize APT tactics and cannot identify fine-grained APT techniques and mutant APT attacks. In this paper, we propose TREC, the first attempt to recognize APT tactics / techniques from provenance graphs by exploiting deep learning techniques. To address the "needle in a haystack" problem, TREC segments small and compact subgraphs covering individual APT technique instances from a large provenance graph based on a malicious node detection model and a subgraph sampling algorithm. To address the "training sample scarcity" problem, TREC trains the APT tactic / technique recognition model in a few-shot learning manner by adopting a Siamese neural network. We evaluate TREC based on a customized dataset collected and made public by our team. The experiment results show that TREC significantly outperforms state-of-the-art systems in APT tactic recognition and TREC can also effectively identify APT techniques.
Abstract:A cyber-attack is a malicious attempt by experienced hackers to breach the target information system. Usually, the cyber-attacks are characterized as hybrid TTPs (Tactics, Techniques, and Procedures) and long-term adversarial behaviors, making the traditional intrusion detection methods ineffective. Most existing cyber-attack detection systems are implemented based on manually designed rules by referring to domain knowledge (e.g., threat models, threat intelligences). However, this process is lack of intelligence and generalization ability. Aiming at this limitation, this paper proposes an intelligent cyber-attack detection method based on provenance data. To effective and efficient detect cyber-attacks from a huge number of system events in the provenance data, we firstly model the provenance data by a heterogeneous graph to capture the rich context information of each system entities (e.g., process, file, socket, etc.), and learns a semantic vector representation for each system entity. Then, we perform online cyber-attack detection by sampling a small and compact local graph from the heterogeneous graph, and classifying the key system entities as malicious or benign. We conducted a series of experiments on two provenance datasets with real cyber-attacks. The experiment results show that the proposed method outperforms other learning based detection models, and has competitive performance against state-of-the-art rule based cyber-attack detection systems.
Abstract:In order to achieve high efficiency of classification in intrusion detection, a compressed model is proposed in this paper which combines horizontal compression with vertical compression. OneR is utilized as horizontal com-pression for attribute reduction, and affinity propagation is employed as vertical compression to select small representative exemplars from large training data. As to be able to computationally compress the larger volume of training data with scalability, MapReduce based parallelization approach is then implemented and evaluated for each step of the model compression process abovementioned, on which common but efficient classification methods can be directly used. Experimental application study on two publicly available datasets of intrusion detection, KDD99 and CMDC2012, demonstrates that the classification using the compressed model proposed can effectively speed up the detection procedure at up to 184 times, most importantly at the cost of a minimal accuracy difference with less than 1% on average.