Picture for Minghui Pang

Minghui Pang

A Heuristic Autonomous Exploration Method Based on Environmental Information Gain During Quadrotor Flight

Add code
Feb 21, 2023
Viaarxiv icon

Geometry-Based Stochastic Probability Models for the LoS and NLoS Paths of A2G Channels under Urban Scenario

Add code
May 19, 2022
Figure 1 for Geometry-Based Stochastic Probability Models for the LoS and NLoS Paths of A2G Channels under Urban Scenario
Figure 2 for Geometry-Based Stochastic Probability Models for the LoS and NLoS Paths of A2G Channels under Urban Scenario
Figure 3 for Geometry-Based Stochastic Probability Models for the LoS and NLoS Paths of A2G Channels under Urban Scenario
Figure 4 for Geometry-Based Stochastic Probability Models for the LoS and NLoS Paths of A2G Channels under Urban Scenario
Viaarxiv icon

Height-Dependent LoS Probability Model for A2G MmWave Communications under Built-up Scenarios

Add code
Sep 06, 2021
Figure 1 for Height-Dependent LoS Probability Model for A2G MmWave Communications under Built-up Scenarios
Figure 2 for Height-Dependent LoS Probability Model for A2G MmWave Communications under Built-up Scenarios
Figure 3 for Height-Dependent LoS Probability Model for A2G MmWave Communications under Built-up Scenarios
Figure 4 for Height-Dependent LoS Probability Model for A2G MmWave Communications under Built-up Scenarios
Viaarxiv icon

Geometry-Based Stochastic Line-of-Sight Probability Model for A2G Channels under Urban Scenarios

Add code
Sep 06, 2021
Figure 1 for Geometry-Based Stochastic Line-of-Sight Probability Model for A2G Channels under Urban Scenarios
Figure 2 for Geometry-Based Stochastic Line-of-Sight Probability Model for A2G Channels under Urban Scenarios
Figure 3 for Geometry-Based Stochastic Line-of-Sight Probability Model for A2G Channels under Urban Scenarios
Figure 4 for Geometry-Based Stochastic Line-of-Sight Probability Model for A2G Channels under Urban Scenarios
Viaarxiv icon