Tony
Abstract:GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
Abstract:LLMs often face competing pressures (for example helpfulness vs. harmlessness). To understand how models resolve such conflicts, we study Llama-2-chat models on the forbidden fact task. Specifically, we instruct Llama-2 to truthfully complete a factual recall statement while forbidding it from saying the correct answer. This often makes the model give incorrect answers. We decompose Llama-2 into 1000+ components, and rank each one with respect to how useful it is for forbidding the correct answer. We find that in aggregate, around 35 components are enough to reliably implement the full suppression behavior. However, these components are fairly heterogeneous and many operate using faulty heuristics. We discover that one of these heuristics can be exploited via a manually designed adversarial attack which we call The California Attack. Our results highlight some roadblocks standing in the way of being able to successfully interpret advanced ML systems. Project website available at https://forbiddenfacts.github.io .