Abstract:The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.
Abstract:We propose a Reinforcement-Learning-based system that would automatically prescribe a hypothetical patient medications that may help the patient with their mental-health-related speech disfluency, and adjust the medication and the dosages in response to data from the patient. We demonstrate the components of the system: a module that detects and evaluates speech disfluency on a large dataset we built, and a Reinforcement Learning algorithm that automatically finds good combinations of medications. To support the two modules, we collect data on the effect of psychiatric medications for speech disfluency from the literature, and build a plausible patient simulation system. We demonstrate that the Reinforcement Learning system is, under some circumstances, able to converge to a good medication regime. We collect and label a dataset of people with possible speech disfluency and demonstrate our methods using that dataset. Our work is a proof of concept: we show that there is promise in the idea of using automatic data collection to address disfluency.