Abstract:The URIEL+ linguistic knowledge base supports multilingual research by encoding languages through geographic, genetic, and typological vectors. However, data sparsity remains prevalent, in the form of missing feature types, incomplete language entries, and limited genealogical coverage. This limits the usefulness of URIEL+ in cross-lingual transfer, particularly for supporting low-resource languages. To address this sparsity, this paper extends URIEL+ with three contributions: introducing script vectors to represent writing system properties for 7,488 languages, integrating Glottolog to add 18,710 additional languages, and expanding lineage imputation for 26,449 languages by propagating typological and script features across genealogies. These additions reduce feature sparsity by 14% for script vectors, increase language coverage by up to 19,015 languages (1,007%), and improve imputation quality metrics by up to 33%. Our benchmark on cross-lingual transfer tasks (oriented around low-resource languages) shows occasionally divergent performance compared to URIEL+, with performance gains up to 6% in certain setups. Our advances make URIEL+ more complete and inclusive for multilingual research.
Abstract:Existing linguistic knowledge bases such as URIEL+ provide valuable geographic, genetic and typological distances for cross-lingual transfer but suffer from two key limitations. One, their one-size-fits-all vector representations are ill-suited to the diverse structures of linguistic data, and two, they lack a principled method for aggregating these signals into a single, comprehensive score. In this paper, we address these gaps by introducing a framework for type-matched language distances. We propose novel, structure-aware representations for each distance type: speaker-weighted distributions for geography, hyperbolic embeddings for genealogy, and a latent variables model for typology. We unify these signals into a robust, task-agnostic composite distance. In selecting transfer languages, our representations and composite distances consistently improve performance across a wide range of NLP tasks, providing a more principled and effective toolkit for multilingual research.




Abstract:URIEL is a knowledge base offering geographical, phylogenetic, and typological vector representations for 7970 languages. It includes distance measures between these vectors for 4005 languages, which are accessible via the lang2vec tool. Despite being frequently cited, URIEL is limited in terms of linguistic inclusion and overall usability. To tackle these challenges, we introduce URIEL+, an enhanced version of URIEL and lang2vec addressing these limitations. In addition to expanding typological feature coverage for 2898 languages, URIEL+ improves user experience with robust, customizable distance calculations to better suit the needs of the users. These upgrades also offer competitive performance on downstream tasks and provide distances that better align with linguistic distance studies.
Abstract:We propose a Reinforcement-Learning-based system that would automatically prescribe a hypothetical patient medications that may help the patient with their mental-health-related speech disfluency, and adjust the medication and the dosages in response to data from the patient. We demonstrate the components of the system: a module that detects and evaluates speech disfluency on a large dataset we built, and a Reinforcement Learning algorithm that automatically finds good combinations of medications. To support the two modules, we collect data on the effect of psychiatric medications for speech disfluency from the literature, and build a plausible patient simulation system. We demonstrate that the Reinforcement Learning system is, under some circumstances, able to converge to a good medication regime. We collect and label a dataset of people with possible speech disfluency and demonstrate our methods using that dataset. Our work is a proof of concept: we show that there is promise in the idea of using automatic data collection to address disfluency.