University of the Arts London, Creative Computing Institute, London, United Kingdom
Abstract:With the rapid development of VR technology, the demand for high-quality 3D models is increasing. Traditional methods struggle with efficiency and quality in large-scale customization. This paper introduces a deep-learning framework that generates high-precision 3D coral models from a single image. Using the Coral dataset, the framework extracts geometric and texture features, performs 3D reconstruction, and optimizes design and material blending. Advanced optimization and polygon count control ensure shape accuracy, detail retention, and flexible output for various complexities, catering to high-quality rendering and real-time interaction needs.The project incorporates Explainable AI (XAI) to transform AI-generated models into interactive "artworks," best viewed in VR and XR. This enhances model interpretability and human-machine collaboration. Real-time feedback in VR interactions displays information like coral species and habitat, enriching user experience. The generated models surpass traditional methods in detail, visual quality, and efficiency. This research offers an intelligent approach to 3D content creation for VR, lowering production barriers, and promoting widespread VR applications. Additionally, integrating XAI provides new insights into AI-generated visual content and advances research in 3D vision interpretability.
Abstract:Generative deep learning systems offer powerful tools for artefact generation, given their ability to model distributions of data and generate high-fidelity results. In the context of computational creativity, however, a major shortcoming is that they are unable to explicitly diverge from the training data in creative ways and are limited to fitting the target data distribution. To address these limitations, there have been a growing number of approaches for optimising, hacking and rewriting these models in order to actively diverge from the training data. We present a taxonomy and comprehensive survey of the state of the art of active divergence techniques, highlighting the potential for computational creativity researchers to advance these methods and use deep generative models in truly creative systems.
Abstract:Creativity Support Tools (CST) aim to enhance human creativity, but the deeply personal and subjective nature of creativity makes the design of universal support tools challenging. Individuals develop personal approaches to creativity, particularly in the context of commercial design where signature styles and techniques are valuable commodities. Artificial Intelligence (AI) and Machine Learning (ML) techniques could provide a means of creating 'intelligent' CST which learn and adapt to personal styles of creativity. Identifying what kind of role such tools could play in the design process requires a better understanding of designers' attitudes towards working with AI, and their willingness to include it in their personal creative process. This paper details the results of a survey of professional designers which indicates a positive and pragmatic attitude towards collaborating with AI tools, and a particular opportunity for incorporating them in the research stages of a design project.
Abstract:We introduce a new framework for interacting with and manipulating deep generative models that we call network bending. We present a comprehensive set of deterministic transformations that can be inserted as distinct layers into the computational graph of a trained generative neural network and applied during inference. In addition, we present a novel algorithm for clustering features based on their spatial activation maps. This allows features to be grouped together based on spatial similarity in an unsupervised fashion. This results in the meaningful manipulation of sets of features that correspond to the generation of a broad array of semantically significant aspects of the generated images. We demonstrate these transformations on the official pre-trained StyleGAN2 model trained on the FFHQ dataset. In doing so, we lay the groundwork for future interactive multimedia systems where the inner representation of deep generative models are manipulated for greater creative expression, whilst also increasing our understanding of how such "black-box systems" can be more meaningfully interpreted.
Abstract:The authors present a visual instrument developed as part of the creation of the artwork Learning to See. The artwork explores bias in artificial neural networks and provides mechanisms for the manipulation of specifically trained for real-world representations. The exploration of these representations acts as a metaphor for the process of developing a visual understanding and/or visual vocabulary of the world. These representations can be explored and manipulated in real time, and have been produced in such a way so as to reflect specific creative perspectives that call into question the relationship between how both artificial neural networks and humans may construct meaning.
Abstract:We introduce a method which allows users to creatively explore and navigate the vast latent spaces of deep generative models. Specifically, our method enables users to \textit{discover} and \textit{design} \textit{trajectories} in these high dimensional spaces, to construct stories, and produce time-based media such as videos---\textit{with meaningful control over narrative}. Our goal is to encourage and aid the use of deep generative models as a medium for creative expression and story telling with meaningful human control. Our method is analogous to traditional video production pipelines in that we use a conventional non-linear video editor with proxy clips, and conform with arrays of latent space vectors. Examples can be seen at \url{http://deepmeditations.ai}.
Abstract:Deep neural networks have become remarkably good at producing realistic deepfakes, images of people that are (to the untrained eye) indistinguishable from real images. These are produced by algorithms that learn to distinguish between real and fake images and are optimised to generate samples that the system deems realistic. This paper, and the resulting series of artworks Being Foiled explore the aesthetic outcome of inverting this process and instead optimising the system to generate images that it sees as being fake. Maximising the unlikelihood of the data and in turn, amplifying the uncanny nature of these machine hallucinations.
Abstract:In this work we present a method for fine-tuning pre-trained GANs with features from different datasets, resulting in the transformation of the output distribution into a new distribution with novel characteristics. The weights of the generator are updated using the weighted sum of the losses from a cross-dataset classifier and the frozen weights of the pre-trained discriminator. We discuss details of the technical implementation and share some of the visual results from this training process.
Abstract:This paper details a developing artistic practice around an ongoing series of works called (un)stable equilibrium. These works are the product of using modern machine toolkits to train generative models without data, an approach akin to traditional generative art where dynamical systems are explored intuitively for their latent generative possibilities. We discuss some of the guiding principles that have been learnt in the process of experimentation, present details of the implementation of the first series of works and discuss possibilities for future experimentation.
Abstract:We propose a computational framework to learn stylisation patterns from example drawings or writings, and then generate new trajectories that possess similar stylistic qualities. We particularly focus on the generation and stylisation of trajectories that are similar to the ones that can be seen in calligraphy and graffiti art. Our system is able to extract and learn dynamic and visual qualities from a small number of user defined examples which can be recorded with a digitiser device, such as a tablet, mouse or motion capture sensors. Our system is then able to transform new user drawn traces to be kinematically and stylistically similar to the training examples. We implement the system using a Recurrent Mixture Density Network (RMDN) combined with a representation given by the parameters of the Sigma Lognormal model, a physiologically plausible model of movement that has been shown to closely reproduce the velocity and trace of human handwriting gestures.