This paper details a developing artistic practice around an ongoing series of works called (un)stable equilibrium. These works are the product of using modern machine toolkits to train generative models without data, an approach akin to traditional generative art where dynamical systems are explored intuitively for their latent generative possibilities. We discuss some of the guiding principles that have been learnt in the process of experimentation, present details of the implementation of the first series of works and discuss possibilities for future experimentation.