Abstract:Given a partially observed road network, how can we predict the traffic state of unobserved locations? While deep learning approaches show exceptional performance in traffic prediction, most assume sensors at all locations of interest, which is impractical due to financial constraints. Furthermore, these methods typically require costly retraining when sensor configurations change. We propose MoGERNN, an inductive spatio-temporal graph representation model, to address these challenges. Inspired by the Mixture of Experts approach in Large Language Models, we introduce a Mixture of Graph Expert (MoGE) block to model complex spatial dependencies through multiple graph message aggregators and a sparse gating network. This block estimates initial states for unobserved locations, which are then processed by a GRU-based Encoder-Decoder that integrates a graph message aggregator to capture spatio-temporal dependencies and predict future states. Experiments on two real-world datasets show MoGERNN consistently outperforms baseline methods for both observed and unobserved locations. MoGERNN can accurately predict congestion evolution even in areas without sensors, offering valuable information for traffic management. Moreover, MoGERNN is adaptable to dynamic sensing networks, maintaining competitive performance even compared to its retrained counterpart. Tests with different numbers of available sensors confirm its consistent superiority, and ablation studies validate the effectiveness of its key modules.
Abstract:Recently, efforts have been made to standardize signal phase and timing (SPaT) messages. These messages contain signal phase timings of all signalized intersection approaches. This information can thus be used for efficient motion planning, resulting in more homogeneous traffic flows and uniform speed profiles. Despite efforts to provide robust predictions for semi-actuated signal control systems, predicting signal phase timings for fully-actuated controls remains challenging. This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data. We utilize state-of-the-art machine learning models to predict future signal phases' duration. The performance of a Linear Regression (LR), a Random Forest (RF), and a Long-Short-Term-Memory (LSTM) neural network are assessed against a naive baseline model. Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods. Furthermore, tree-based decision models such as the RF perform best with an accuracy that meets requirements for practical applications.