



Abstract:In this paper, a probabilistic space-time representation of complex traffic scenarios is predicted using machine learning algorithms. Such a representation is significant for all active vehicle safety applications especially when performing dynamic maneuvers in a complex traffic scenario. As a first step, a hierarchical situation classifier is used to distinguish the different types of traffic scenarios. This classifier is responsible for identifying the type of the road infrastructure and the safety-relevant traffic participants of the driving environment. With each class representing similar traffic scenarios, a set of Random Forests (RFs) is individually trained to predict the probabilistic space-time representation, which depicts the future behavior of traffic participants. This representation is termed as a Predicted-Occupancy Grid (POG). The input to the RFs is an Augmented Occupancy Grid (AOG). In order to increase the learning accuracy of the RFs and to perform better predictions, the AOG is reduced to low-dimensional features using a Stacked Denoising Autoencoder (SDA). The excellent performance of the proposed machine learning approach consisting of SDAs and RFs is demonstrated in simulations and in experiments with real vehicles. An application of POGs to estimate the criticality of traffic scenarios and to determine safe trajectories is also presented.
Abstract:This paper presents a method to predict the evolution of a complex traffic scenario with multiple objects. The current state of the scenario is assumed to be known from sensors and the prediction is taking into account various hypotheses about the behavior of traffic participants. This way, the uncertainties regarding the behavior of traffic participants can be modelled in detail. In the first part of this paper a model-based approach is presented to compute Predicted-Occupancy Grids (POG), which are introduced as a grid-based probabilistic representation of the future scenario hypotheses. However, due to the large number of possible trajectories for each traffic participant, the model-based approach comes with a very high computational load. Thus, a machine-learning approach is adopted for the computation of POGs. This work uses a novel grid-based representation of the current state of the traffic scenario and performs the mapping to POGs. This representation consists of augmented cells in an occupancy grid. The adopted machine-learning approach is based on the Random Forest algorithm. Simulations of traffic scenarios are performed to compare the machine-learning with the model-based approach. The results are promising and could enable the real-time computation of POGs for vehicle safety applications. With this detailed modelling of uncertainties, crucial components in vehicle safety systems like criticality estimation and trajectory planning can be improved.




Abstract:This paper introduces a novel machine learning architecture for an efficient estimation of the probabilistic space-time representation of complex traffic scenarios. A detailed representation of the future traffic scenario is of significant importance for autonomous driving and for all active safety systems. In order to predict the future space-time representation of the traffic scenario, first the type of traffic scenario is identified and then the machine learning algorithm maps the current state of the scenario to possible future states. The input to the machine learning algorithms is the current state representation of a traffic scenario, termed as the Augmented Occupancy Grid (AOG). The output is the probabilistic space-time representation which includes uncertainties regarding the behaviour of the traffic participants and is termed as the Predicted Occupancy Grid (POG). The novel architecture consists of two Stacked Denoising Autoencoders (SDAs) and a set of Random Forests. It is then compared with the other two existing architectures that comprise of SDAs and DeconvNet. The architectures are validated with the help of simulations and the comparisons are made both in terms of accuracy and computational time. Also, a brief overview on the applications of POGs in the field of active safety is presented.
Abstract:Precise vehicle state estimation is crucial for safe and reliable autonomous driving. The number of measurable states and their precision offered by the onboard vehicle sensor system are often constrained by cost. For instance, measuring critical quantities such as the Vehicle Sideslip Angle (VSA) poses significant commercial challenges using current optical sensors. This paper addresses these limitations by focusing on the development of high-performance virtual sensors to enhance vehicle state estimation for active safety. The proposed Uncertainty-Aware Hybrid Learning (UAHL) architecture integrates a machine learning model with vehicle motion models to estimate VSA directly from onboard sensor data. A key aspect of the UAHL architecture is its focus on uncertainty quantification for individual model estimates and hybrid fusion. These mechanisms enable the dynamic weighting of uncertainty-aware predictions from machine learning and vehicle motion models to produce accurate and reliable hybrid VSA estimates. This work also presents a novel dataset named Real-world Vehicle State Estimation Dataset (ReV-StED), comprising synchronized measurements from advanced vehicle dynamic sensors. The experimental results demonstrate the superior performance of the proposed method for VSA estimation, highlighting UAHL as a promising architecture for advancing virtual sensors and enhancing active safety in autonomous vehicles.
Abstract:Trajectory prediction is crucial to advance autonomous driving, improving safety, and efficiency. Although end-to-end models based on deep learning have great potential, they often do not consider vehicle dynamic limitations, leading to unrealistic predictions. To address this problem, this work introduces a novel hybrid model that combines deep learning with a kinematic motion model. It is able to predict object attributes such as acceleration and yaw rate and generate trajectories based on them. A key contribution is the incorporation of expert knowledge into the learning objective of the deep learning model. This results in the constraint of the available action space, thus enabling the prediction of physically feasible object attributes and trajectories, thereby increasing safety and robustness. The proposed hybrid model facilitates enhanced interpretability, thereby reinforcing the trustworthiness of deep learning methods and promoting the development of safe planning solutions. Experiments conducted on the publicly available real-world Argoverse dataset demonstrate realistic driving behaviour, with benchmark comparisons and ablation studies showing promising results.
Abstract:This work introduces the conditioned Vehicle Motion Diffusion (cVMD) model, a novel network architecture for highway trajectory prediction using diffusion models. The proposed model ensures the drivability of the predicted trajectory by integrating non-holonomic motion constraints and physical constraints into the generative prediction module. Central to the architecture of cVMD is its capacity to perform uncertainty quantification, a feature that is crucial in safety-critical applications. By integrating the quantified uncertainty into the prediction process, the cVMD's trajectory prediction performance is improved considerably. The model's performance was evaluated using the publicly available highD dataset. Experiments show that the proposed architecture achieves competitive trajectory prediction accuracy compared to state-of-the-art models, while providing guaranteed drivable trajectories and uncertainty quantification.
Abstract:For automotive applications, the Graph Attention Network (GAT) is a prominently used architecture to include relational information of a traffic scenario during feature embedding. As shown in this work, however, one of the most popular GAT realizations, namely GATv2, has potential pitfalls that hinder an optimal parameter learning. Especially for small and sparse graph structures a proper optimization is problematic. To surpass limitations, this work proposes architectural modifications of GATv2. In controlled experiments, it is shown that the proposed model adaptions improve prediction performance in a node-level regression task and make it more robust to parameter initialization. This work aims for a better understanding of the attention mechanism and analyzes its interpretability of identifying causal importance.




Abstract:This work introduces the multidimensional Graph Fourier Transformation Neural Network (GFTNN) for long-term trajectory predictions on highways. Similar to Graph Neural Networks (GNNs), the GFTNN is a novel network architecture that operates on graph structures. While several GNNs lack discriminative power due to suboptimal aggregation schemes, the proposed model aggregates scenario properties through a powerful operation: the multidimensional Graph Fourier Transformation (GFT). The spatio-temporal vehicle interaction graph of a scenario is converted into a spectral scenario representation using the GFT. This beneficial representation is input to the prediction framework composed of a neural network and a descriptive decoder. Even though the proposed GFTNN does not include any recurrent element, it outperforms state-of-the-art models in the task of highway trajectory prediction. For experiments and evaluation, the publicly available datasets highD and NGSIM are used


Abstract:This work provides a comprehensive derivation of the parameter gradients for GATv2 [4], a widely used implementation of Graph Attention Networks (GATs). GATs have proven to be powerful frameworks for processing graph-structured data and, hence, have been used in a range of applications. However, the achieved performance by these attempts has been found to be inconsistent across different datasets and the reasons for this remains an open research question. As the gradient flow provides valuable insights into the training dynamics of statistically learning models, this work obtains the gradients for the trainable model parameters of GATv2. The gradient derivations supplement the efforts of [2], where potential pitfalls of GATv2 are investigated.




Abstract:Representation learning in recent years has been addressed with self-supervised learning methods. The input data is augmented into two distorted views and an encoder learns the representations that are invariant to distortions -- cross-view prediction. Augmentation is one of the key components in cross-view self-supervised learning frameworks to learn visual representations. This paper presents ExAgt, a novel method to include expert knowledge for augmenting traffic scenarios, to improve the learnt representations without any human annotation. The expert-guided augmentations are generated in an automated fashion based on the infrastructure, the interactions between the EGO and the traffic participants and an ideal sensor model. The ExAgt method is applied in two state-of-the-art cross-view prediction methods and the representations learnt are tested in downstream tasks like classification and clustering. Results show that the ExAgt method improves representation learning compared to using only standard augmentations and it provides a better representation space stability. The code is available at https://github.com/lab176344/ExAgt.