Abstract:The integration of miniaturized spectrometers into mobile devices offers new avenues for image quality enhancement and facilitates novel downstream tasks. However, the broader application of spectral sensors in mobile photography is hindered by the inherent complexity of spectral images and the constraints of spectral imaging capabilities. To overcome these challenges, we propose a joint RGB-Spectral decomposition model guided enhancement framework, which consists of two steps: joint decomposition and prior-guided enhancement. Firstly, we leverage the complementarity between RGB and Low-resolution Multi-Spectral Images (Lr-MSI) to predict shading, reflectance, and material semantic priors. Subsequently, these priors are seamlessly integrated into the established HDRNet to promote dynamic range enhancement, color mapping, and grid expert learning, respectively. Additionally, we construct a high-quality Mobile-Spec dataset to support our research, and our experiments validate the effectiveness of Lr-MSI in the tone enhancement task. This work aims to establish a solid foundation for advancing spectral vision in mobile photography. The code is available at \url{https://github.com/CalayZhou/JDM-HDRNet}.
Abstract:Visual tracking often faces challenges such as invalid targets and decreased performance in low-light conditions when relying solely on RGB image sequences. While incorporating additional modalities like depth and infrared data has proven effective, existing multi-modal imaging platforms are complex and lack real-world applicability. In contrast, near-infrared (NIR) imaging, commonly used in surveillance cameras, can switch between RGB and NIR based on light intensity. However, tracking objects across these heterogeneous modalities poses significant challenges, particularly due to the absence of modality switch signals during tracking. To address these challenges, we propose an adaptive cross-modal object tracking algorithm called Modality-Aware Fusion Network (MAFNet). MAFNet efficiently integrates information from both RGB and NIR modalities using an adaptive weighting mechanism, effectively bridging the appearance gap and enabling a modality-aware target representation. It consists of two key components: an adaptive weighting module and a modality-specific representation module......