Abstract:Reinforcement learning (RL) is a sub-domain of machine learning, mainly concerned with solving sequential decision-making problems by a learning agent that interacts with the decision environment to improve its behavior through the reward it receives from the environment. This learning paradigm is, however, well-known for being time-consuming due to the necessity of collecting a large amount of data, making RL suffer from sample inefficiency and difficult generalization. Furthermore, the construction of an explicit reward function that accounts for the trade-off between multiple desiderata of a decision problem is often a laborious task. These challenges have been recently addressed utilizing transfer and inverse reinforcement learning (T-IRL). In this regard, this paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through T-IRL. Following a brief introduction to RL, the fundamental T-IRL methods are presented and the most recent advancements in each research field have been extensively reviewed. Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies for the efficient transfer of knowledge from source domains to the target domain under the transfer learning scheme. Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
Abstract:Federated learning has been rapidly evolving and gaining popularity in recent years due to its privacy-preserving features, among other advantages. Nevertheless, the exchange of model updates and gradients in this architecture provides new attack surfaces for malicious users of the network which may jeopardize the model performance and user and data privacy. For this reason, one of the main motivations for decentralized federated learning is to eliminate server-related threats by removing the server from the network and compensating for it through technologies such as blockchain. However, this advantage comes at the cost of challenging the system with new privacy threats. Thus, performing a thorough security analysis in this new paradigm is necessary. This survey studies possible variations of threats and adversaries in decentralized federated learning and overviews the potential defense mechanisms. Trustability and verifiability of decentralized federated learning are also considered in this study.
Abstract:The performance of fault diagnosis systems is highly affected by data quality in cyber-physical power systems. These systems generate massive amounts of data that overburden the system with excessive computational costs. Another issue is the presence of noise in recorded measurements, which prevents building a precise decision model. Furthermore, the diagnostic model is often provided with a mixture of redundant measurements that may deviate it from learning normal and fault distributions. This paper presents the effect of feature engineering on mitigating the aforementioned challenges in cyber-physical systems. Feature selection and dimensionality reduction methods are combined with decision models to simulate data-driven fault diagnosis in a 118-bus power system. A comparative study is enabled accordingly to compare several advanced techniques in both domains. Dimensionality reduction and feature selection methods are compared both jointly and separately. Finally, experiments are concluded, and a setting is suggested that enhances data quality for fault diagnosis.
Abstract:This paper presents a novel data-driven framework to aid in system state estimation when the power system is under unobservable false data injection attacks. The proposed framework dynamically detects and classifies false data injection attacks. Then, it retrieves the control signal using the acquired information. This process is accomplished in three main modules, with novel designs, for detection, classification, and control signal retrieval. The detection module monitors historical changes in phasor measurements and captures any deviation pattern caused by an attack on a complex plane. This approach can help to reveal characteristics of the attacks including the direction, magnitude, and ratio of the injected false data. Using this information, the signal retrieval module can easily recover the original control signal and remove the injected false data. Further information regarding the attack type can be obtained through the classifier module. The proposed ensemble learner is compatible with harsh learning conditions including the lack of labeled data, concept drift, concept evolution, recurring classes, and independence from external updates. The proposed novel classifier can dynamically learn from data and classify attacks under all these harsh learning conditions. The introduced framework is evaluated w.r.t. real-world data captured from the Central New York Power System. The obtained results indicate the efficacy and stability of the proposed framework.
Abstract:The advent of federated learning has facilitated large-scale data exchange amongst machine learning models while maintaining privacy. Despite its brief history, federated learning is rapidly evolving to make wider use more practical. One of the most significant advancements in this domain is the incorporation of transfer learning into federated learning, which overcomes fundamental constraints of primary federated learning, particularly in terms of security. This chapter performs a comprehensive survey on the intersection of federated and transfer learning from a security point of view. The main goal of this study is to uncover potential vulnerabilities and defense mechanisms that might compromise the privacy and performance of systems that use federated and transfer learning.