Abstract:With robots increasingly collaborating with humans in everyday tasks, it is important to take steps toward robotic systems capable of understanding the environment. This work focuses on scene understanding to detect pick and place tasks given initial and final images from the scene. To this end, a dataset is collected for object detection and pick and place task detection. A YOLOv5 network is subsequently trained to detect the objects in the initial and final scenes. Given the detected objects and their bounding boxes, two methods are proposed to detect the pick and place tasks which transform the initial scene into the final scene. A geometric method is proposed which tracks objects' movements in the two scenes and works based on the intersection of the bounding boxes which moved within scenes. Contrarily, the CNN-based method utilizes a Convolutional Neural Network to classify objects with intersected bounding boxes into 5 classes, showing the spatial relationship between the involved objects. The performed pick and place tasks are then derived from analyzing the experiments with both scenes. Results show that the CNN-based method, using a VGG16 backbone, outscores the geometric method by roughly 12 percentage points in certain scenarios, with an overall success rate of 84.3%.
Abstract:Robotic grasp should be carried out in a real-time manner by proper accuracy. Perception is the first and significant step in this procedure. This paper proposes an improved pipeline model trying to detect grasp as a rectangle representation for different seen or unseen objects. It helps the robot to start control procedures from nearer to the proper part of the object. The main idea consists in pre-processing, output normalization, and data augmentation to improve accuracy by 4.3 percent without making the system slow. Also, a comparison has been conducted over different pre-trained models like AlexNet, ResNet, Vgg19, which are the most famous feature extractors for image processing in object detection. Although AlexNet has less complexity than other ones, it outperformed them, which helps the real-time property.
Abstract:Humans, this species expert in grasp detection, can grasp objects by taking into account hand-object positioning information. This work proposes a method to enable a robot manipulator to learn the same, grasping objects in the most optimal way according to how the gripper has approached the object. Built on deep learning, the proposed method consists of two main stages. In order to generalize the network on unseen objects, the proposed Approach-based Grasping Inference involves an element decomposition stage to split an object into its main parts, each with one or more annotated grasps for a particular approach of the gripper. Subsequently, a grasp detection network utilizes the decomposed elements by Mask R-CNN and the information on the approach of the gripper in order to detect the element the gripper has approached and the most optimal grasp. In order to train the networks, the study introduces a robotic grasping dataset collected in the Coppeliasim simulation environment. The dataset involves 10 different objects with annotated element decomposition masks and grasp rectangles. The proposed method acquires a 90% grasp success rate on seen objects and 78% on unseen objects in the Coppeliasim simulation environment. Lastly, simulation-to-reality domain adaptation is performed by applying transformations on the training set collected in simulation and augmenting the dataset, which results in a 70% physical grasp success performance using a Delta parallel robot and a 2 -fingered gripper.
Abstract:This paper presents a lightweight algorithm for feature extraction, classification of seven different emotions, and facial expression recognition in a real-time manner based on static images of the human face. In this regard, a Multi-Layer Perceptron (MLP) neural network is trained based on the foregoing algorithm. In order to classify human faces, first, some pre-processing is applied to the input image, which can localize and cut out faces from it. In the next step, a facial landmark detection library is used, which can detect the landmarks of each face. Then, the human face is split into upper and lower faces, which enables the extraction of the desired features from each part. In the proposed model, both geometric and texture-based feature types are taken into account. After the feature extraction phase, a normalized vector of features is created. A 3-layer MLP is trained using these feature vectors, leading to 96% accuracy on the test set.
Abstract:Hand hygiene is crucial for preventing viruses and infections. Due to the pervasive outbreak of COVID-19, wearing a mask and hand hygiene appear to be the most effective ways for the public to curb the spread of these viruses. The World Health Organization (WHO) recommends a guideline for alcohol-based hand rub in eight steps to ensure that all surfaces of hands are entirely clean. As these steps involve complex gestures, human assessment of them lacks enough accuracy. However, Deep Neural Network (DNN) and machine vision have made it possible to accurately evaluate hand rubbing quality for the purposes of training and feedback. In this paper, an automated deep learning based hand rub assessment system with real-time feedback is presented. The system evaluates the compliance with the 8-step guideline using a DNN architecture trained on a dataset of videos collected from volunteers with various skin tones and hand characteristics following the hand rubbing guideline. Various DNN architectures were tested, and an Inception-ResNet model led to the best results with 97% test accuracy. In the proposed system, an NVIDIA Jetson AGX Xavier embedded board runs the software. The efficacy of the system is evaluated in a concrete situation of being used by various users, and challenging steps are identified. In this experiment, the average time taken by the hand rubbing steps among volunteers is 27.2 seconds, which conforms to the WHO guidelines.
Abstract:In this paper, a method to mimic a human face and eyes is proposed which can be regarded as a combination of computer vision techniques and neural network concepts. From a mechanical standpoint, a 3-DOF spherical parallel robot is used which imitates the human head movement. In what concerns eye movement, a 2-DOF mechanism is attached to the end-effector of the 3-DOF spherical parallel mechanism. In order to have robust and reliable results for the imitation, meaningful information should be extracted from the face mesh for obtaining the pose of a face, i.e., the roll, yaw, and pitch angles. To this end, two methods are proposed where each of them has its own pros and cons. The first method consists in resorting to the so-called Mediapipe library which is a machine learning solution for high-fidelity body pose tracking, introduced by Google. As the second method, a model is trained by a linear regression model for a gathered dataset of face pictures in different poses. In addition, a 3-DOF Agile Eye parallel robot is utilized to show the ability of this robot to be used as a system which is similar to a human head for performing a 3-DOF rotational motion pattern. Furthermore, a 3D printed face and a 2-DOF eye mechanism are fabricated to display the whole system more stylish way. Experimental tests, which are done based on a ROS platform, demonstrate the effectiveness of the proposed methods for tracking the human head and eye movement.