Abstract:In this paper, we propose to exploit the side-tuning framework for multimodal document classification. Side-tuning is a methodology for network adaptation recently introduced to solve some of the problems related to previous approaches. Thanks to this technique it is actually possible to overcome model rigidity and catastrophic forgetting of transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning architectures leveraging the side-tuning framework to combine a base model with a tandem of two side networks. We show that side-tuning can be successfully employed also when different data sources are considered, e.g. text and images in document classification. The experimental results show that this approach pushes further the limit for document classification accuracy with respect to the state of the art.
Abstract:Meta-solver approaches exploits a number of individual solvers to potentially build a better solver. To assess the performance of meta-solvers, one can simply adopt the metrics typically used for individual solvers (e.g., runtime or solution quality), or employ more specific evaluation metrics (e.g., by measuring how close the meta-solver gets to its virtual best performance). In this paper, based on some recently published works, we provide an overview of different performance metrics for evaluating (meta-)solvers, by underlying their strengths and weaknesses.
Abstract:Programming language detection is a common need in the analysis of large source code bases. It is supported by a number of existing tools that rely on several features, and most notably file extensions, to determine file types. We consider the problem of accurately detecting the type of files commonly found in software code bases, based solely on textual file content. Doing so is helpful to classify source code that lack file extensions (e.g., code snippets posted on the Web or executable scripts), to avoid misclassifying source code that has been recorded with wrong or uncommon file extensions, and also shed some light on the intrinsic recognizability of source code files. We propose a simple model that (a) use a language-agnostic word tokenizer for textual files, (b) group tokens in 1-/2-grams, (c) build feature vectors based on N-gram frequencies, and (d) use a simple fully connected neural network as classifier. As training set we use textual files extracted from GitHub repositories with at least 1000 stars, using existing file extensions as ground truth. Despite its simplicity the proposed model reaches 85% in our experiments for a relatively high number of recognized classes (more than 130 file types).
Abstract:SUNNY is an Algorithm Selection (AS) technique originally tailored for Constraint Programming (CP). SUNNY enables to schedule, from a portfolio of solvers, a subset of solvers to be run on a given CP problem. This approach has proved to be effective for CP problems, and its parallel version won many gold medals in the Open category of the MiniZinc Challenge -- the yearly international competition for CP solvers. In 2015, the ASlib benchmarks were released for comparing AS systems coming from disparate fields (e.g., ASP, QBF, and SAT) and SUNNY was extended to deal with generic AS problems. This led to the development of sunny-as2, an algorithm selector based on SUNNY for ASlib scenarios. A preliminary version of sunny-as2 was submitted to the Open Algorithm Selection Challenge (OASC) in 2017, where it turned out to be the best approach for the runtime minimization of decision problems. In this work, we present the technical advancements of sunny-as2, including: (i) wrapper-based feature selection; (ii) a training approach combining feature selection and neighbourhood size configuration; (iii) the application of nested cross-validation. We show how sunny-as2 performance varies depending on the considered AS scenarios, and we discuss its strengths and weaknesses. Finally, we also show how sunny-as2 improves on its preliminary version submitted to OASC.
Abstract:In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore architectures are exploited. In this work we give a brief overview of the portfolio solver sunny-cp, and we discuss its performance in the MiniZinc Challenge---the annual international competition for CP solvers---where it won two gold medals in 2015 and 2016. Under consideration in Theory and Practice of Logic Programming (TPLP)
Abstract:*** To appear in IJCAI 2015 proceedings *** In Constraint Programming (CP), a portfolio solver uses a variety of different solvers for solving a given Constraint Satisfaction / Optimization Problem. In this paper we introduce sunny-cp2: the first parallel CP portfolio solver that enables a dynamic, cooperative, and simultaneous execution of its solvers in a multicore setting. It incorporates state-of-the-art solvers, providing also a usable and configurable framework. Empirical results are very promising. sunny-cp2 can even outperform the performance of the oracle solver which always selects the best solver of the portfolio for a given problem.
Abstract:*** To appear in Theory and Practice of Logic Programming (TPLP) *** Within the context of constraint solving, a portfolio approach allows one to exploit the synergy between different solvers in order to create a globally better solver. In this paper we present SUNNY: a simple and flexible algorithm that takes advantage of a portfolio of constraint solvers in order to compute --- without learning an explicit model --- a schedule of them for solving a given Constraint Satisfaction Problem (CSP). Motivated by the performance reached by SUNNY vs. different simulations of other state of the art approaches, we developed sunny-csp, an effective portfolio solver that exploits the underlying SUNNY algorithm in order to solve a given CSP. Empirical tests conducted on exhaustive benchmarks of MiniZinc models show that the actual performance of SUNNY conforms to the predictions. This is encouraging both for improving the power of CSP portfolio solvers and for trying to export them to fields such as Answer Set Programming and Constraint Logic Programming.
Abstract:We propose a timed and soft extension of Concurrent Constraint Programming. The time extension is based on the hypothesis of bounded asynchrony: the computation takes a bounded period of time and is measured by a discrete global clock. Action prefixing is then considered as the syntactic marker which distinguishes a time instant from the next one. Supported by soft constraints instead of crisp ones, tell and ask agents are now equipped with a preference (or consistency) threshold which is used to determine their success or suspension. In the paper we provide a language to describe the agents behavior, together with its operational and denotational semantics, for which we also prove the compositionality and correctness properties. After presenting a semantics using maximal parallelism of actions, we also describe a version for their interleaving on a single processor (with maximal parallelism for time elapsing). Coordinating agents that need to take decisions both on preference values and time events may benefit from this language. To appear in Theory and Practice of Logic Programming (TPLP).
Abstract:Recent research has shown that a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. The solver selection is usually done by means of (un)supervised learning techniques which exploit features extracted from the problem specification. In this paper we present an useful and flexible framework that is able to extract an extensive set of features from a Constraint (Satisfaction/Optimization) Problem defined in possibly different modeling languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results showing that the performances that can be obtained using these features are effective and competitive with state of the art CSP portfolio techniques.
Abstract:Recent research in areas such as SAT solving and Integer Linear Programming has shown that the performances of a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. We report an empirical evaluation and comparison of portfolio approaches applied to Constraint Satisfaction Problems (CSPs). We compared models developed on top of off-the-shelf machine learning algorithms with respect to approaches used in the SAT field and adapted for CSPs, considering different portfolio sizes and using as evaluation metrics the number of solved problems and the time taken to solve them. Results indicate that the best SAT approaches have top performances also in the CSP field and are slightly more competitive than simple models built on top of classification algorithms.