Abstract:Simulation plays a crucial role in the rapid development and safe deployment of autonomous vehicles. Realistic traffic agent models are indispensable for bridging the gap between simulation and the real world. Many existing approaches for imitating human behavior are based on learning from demonstration. However, these approaches are often constrained by focusing on individual training strategies. Therefore, to foster a broader understanding of realistic traffic agent modeling, in this paper, we provide an extensive comparative analysis of different training principles, with a focus on closed-loop methods for highway driving simulation. We experimentally compare (i) open-loop vs. closed-loop multi-agent training, (ii) adversarial vs. deterministic supervised training, (iii) the impact of reinforcement losses, and (iv) the impact of training alongside log-replayed agents to identify suitable training techniques for realistic agent modeling. Furthermore, we identify promising combinations of different closed-loop training methods.
Abstract:Learning the kernel parameters for Gaussian processes is often the computational bottleneck in applications such as online learning, Bayesian optimization, or active learning. Amortizing parameter inference over different datasets is a promising approach to dramatically speed up training time. However, existing methods restrict the amortized inference procedure to a fixed kernel structure. The amortization network must be redesigned manually and trained again in case a different kernel is employed, which leads to a large overhead in design time and training time. We propose amortizing kernel parameter inference over a complete kernel-structure-family rather than a fixed kernel structure. We do that via defining an amortization network over pairs of datasets and kernel structures. This enables fast kernel inference for each element in the kernel family without retraining the amortization network. As a by-product, our amortization network is able to do fast ensembling over kernel structures. In our experiments, we show drastically reduced inference time combined with competitive test performance for a large set of kernels and datasets.
Abstract:Learning precise surrogate models of complex computer simulations and physical machines often require long-lasting or expensive experiments. Furthermore, the modeled physical dependencies exhibit nonlinear and nonstationary behavior. Machine learning methods that are used to produce the surrogate model should therefore address these problems by providing a scheme to keep the number of queries small, e.g. by using active learning and be able to capture the nonlinear and nonstationary properties of the system. One way of modeling the nonstationarity is to induce input-partitioning, a principle that has proven to be advantageous in active learning for Gaussian processes. However, these methods either assume a known partitioning, need to introduce complex sampling schemes or rely on very simple geometries. In this work, we present a simple, yet powerful kernel family that incorporates a partitioning that: i) is learnable via gradient-based methods, ii) uses a geometry that is more flexible than previous ones, while still being applicable in the low data regime. Thus, it provides a good prior for active learning procedures. We empirically demonstrate excellent performance on various active learning tasks.
Abstract:Cooperative trajectory planning methods for automated vehicles, are capable to solve traffic scenarios that require a high degree of cooperation between traffic participants. In order for cooperative systems to integrate in human-centered traffic, it is important that the automated systems behave human-like, so that humans can anticipate the system's decisions. While Reinforcement Learning has made remarkable progress in solving the decision making part, it is non-trivial to parameterize a reward model that yields predictable actions. This work employs feature-based Maximum Entropy Inverse Reinforcement Learning in combination with Monte Carlo Tree Search to learn reward models that maximizes the likelihood of recorded multi-agent cooperative expert trajectories. The evaluation demonstrates that the approach is capable of recovering a reasonable reward model that mimics the expert and performs similar to a manually tuned baseline reward model.