Abstract:We address a novel cross-domain few-shot learning task (CD-FSL) with multimodal input and unlabeled target data for egocentric action recognition. This paper simultaneously tackles two critical challenges associated with egocentric action recognition in CD-FSL settings: (1) the extreme domain gap in egocentric videos (\eg, daily life vs. industrial domain) and (2) the computational cost for real-world applications. We propose MM-CDFSL, a domain-adaptive and computationally efficient approach designed to enhance adaptability to the target domain and improve inference speed. To address the first challenge, we propose the incorporation of multimodal distillation into the student RGB model using teacher models. Each teacher model is trained independently on source and target data for its respective modality. Leveraging only unlabeled target data during multimodal distillation enhances the student model's adaptability to the target domain. We further introduce ensemble masked inference, a technique that reduces the number of input tokens through masking. In this approach, ensemble prediction mitigates the performance degradation caused by masking, effectively addressing the second issue. Our approach outperformed the state-of-the-art CD-FSL approaches with a substantial margin on multiple egocentric datasets, improving by an average of 6.12/6.10 points for 1-shot/5-shot settings while achieving $2.2$ times faster inference speed. Project page: https://masashi-hatano.github.io/MM-CDFSL/
Abstract:Surgical phase recognition has gained significant attention due to its potential to offer solutions to numerous demands of the modern operating room. However, most existing methods concentrate on minimally invasive surgery (MIS), leaving surgical phase recognition for open surgery understudied. This discrepancy is primarily attributed to the scarcity of publicly available open surgery video datasets for surgical phase recognition. To address this issue, we introduce a new egocentric open surgery video dataset for phase recognition, named EgoSurgery-Phase. This dataset comprises 15 hours of real open surgery videos spanning 9 distinct surgical phases all captured using an egocentric camera attached to the surgeon's head. In addition to video, the EgoSurgery-Phase offers eye gaze. As far as we know, it is the first real open surgery video dataset for surgical phase recognition publicly available. Furthermore, inspired by the notable success of masked autoencoders (MAEs) in video understanding tasks (e.g., action recognition), we propose a gaze-guided masked autoencoder (GGMAE). Considering the regions where surgeons' gaze focuses are often critical for surgical phase recognition (e.g., surgical field), in our GGMAE, the gaze information acts as an empirical semantic richness prior to guiding the masking process, promoting better attention to semantically rich spatial regions. GGMAE significantly improves the previous state-of-the-art recognition method (6.4% in Jaccard) and the masked autoencoder-based method (3.1% in Jaccard) on EgoSurgery-Phase. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
Abstract:Predicting future human behavior from egocentric videos is a challenging but critical task for human intention understanding. Existing methods for forecasting 2D hand positions rely on visual representations and mainly focus on hand-object interactions. In this paper, we investigate the hand forecasting task and tackle two significant issues that persist in the existing methods: (1) 2D hand positions in future frames are severely affected by ego-motions in egocentric videos; (2) prediction based on visual information tends to overfit to background or scene textures, posing a challenge for generalization on novel scenes or human behaviors. To solve the aforementioned problems, we propose EMAG, an ego-motion-aware and generalizable 2D hand forecasting method. In response to the first problem, we propose a method that considers ego-motion, represented by a sequence of homography matrices of two consecutive frames. We further leverage modalities such as optical flow, trajectories of hands and interacting objects, and ego-motions, thereby alleviating the second issue. Extensive experiments on two large-scale egocentric video datasets, Ego4D and EPIC-Kitchens 55, verify the effectiveness of the proposed method. In particular, our model outperforms prior methods by $7.0$\% on cross-dataset evaluations. Project page: https://masashi-hatano.github.io/EMAG/