Abstract:Face morphing attacks aim at creating face images that are verifiable to be the face of multiple identities, which can lead to building faulty identity links in operations like border checks. While creating a morphed face detector (MFD), training on all possible attack types is essential to achieve good detection performance. Therefore, investigating new methods of creating morphing attacks drives the generalizability of MADs. Creating morphing attacks was performed on the image level, by landmark interpolation, or on the latent-space level, by manipulating latent vectors in a generative adversarial network. The earlier results in varying blending artifacts and the latter results in synthetic-like striping artifacts. This work presents the novel morphing pipeline, ReGenMorph, to eliminate the LMA blending artifacts by using a GAN-based generation, as well as, eliminate the manipulation in the latent space, resulting in visibly realistic morphed images compared to previous works. The generated ReGenMorph appearance is compared to recent morphing approaches and evaluated for face recognition vulnerability and attack detectability, whether as known or unknown attacks.
Abstract:The recent COVID-19 pandemic has increased the focus on hygienic and contactless identity verification methods. However, the pandemic led to the wide use of face masks, essential to keep the pandemic under control. The effect of wearing a mask on face recognition in a collaborative environment is currently sensitive yet understudied issue. Recent reports have tackled this by evaluating the masked probe effect on the performance of automatic face recognition solutions. However, such solutions can fail in certain processes, leading to performing the verification task by a human expert. This work provides a joint evaluation and in-depth analyses of the face verification performance of human experts in comparison to state-of-the-art automatic face recognition solutions. This involves an extensive evaluation with 12 human experts and 4 automatic recognition solutions. The study concludes with a set of take-home-messages on different aspects of the correlation between the verification behavior of human and machine.