Abstract:Self-supervised learning on tabular data seeks to apply advances from natural language and image domains to the diverse domain of tables. However, current techniques often struggle with integrating multi-domain data and require data cleaning or specific structural requirements, limiting the scalability of pre-training datasets. We introduce PORTAL (Pretraining One-Row-at-a-Time for All tabLes), a framework that handles various data modalities without the need for cleaning or preprocessing. This simple yet powerful approach can be effectively pre-trained on online-collected datasets and fine-tuned to match state-of-the-art methods on complex classification and regression tasks. This work offers a practical advancement in self-supervised learning for large-scale tabular data.
Abstract:We present a novel deep-learning-based method to cluster words in documents which we apply to detect and recognize tables given the OCR output. We interpret table structure bottom-up as a graph of relations between pairs of words (belonging to the same row, column, header, as well as to the same table) and use a transformer encoder model to predict its adjacency matrix. We demonstrate the performance of our method on the PubTables-1M dataset as well as PubTabNet and FinTabNet datasets. Compared to the current state-of-the-art detection methods such as DETR and Faster R-CNN, our method achieves similar or better accuracy, while requiring a significantly smaller model.
Abstract:We present an end-to-end trainable approach for optical character recognition (OCR) on printed documents. It is based on predicting a two-dimensional character grid (\emph{chargrid}) representation of a document image as a semantic segmentation task. To identify individual character instances from the chargrid, we regard characters as objects and use object detection techniques from computer vision. We demonstrate experimentally that our method outperforms previous state-of-the-art approaches in accuracy while being easily parallelizable on GPU (therefore being significantly faster), as well as easier to train.