Abstract:Multimodal large language models have demonstrated comparable performance to that of radiology trainees on multiple-choice board-style exams. However, to develop clinically useful multimodal LLM tools, high-quality benchmarks curated by domain experts are essential. To curate released and holdout datasets of 100 chest radiographic studies each and propose an artificial intelligence (AI)-assisted expert labeling procedure to allow radiologists to label studies more efficiently. A total of 13,735 deidentified chest radiographs and their corresponding reports from the MIDRC were used. GPT-4o extracted abnormal findings from the reports, which were then mapped to 12 benchmark labels with a locally hosted LLM (Phi-4-Reasoning). From these studies, 1,000 were sampled on the basis of the AI-suggested benchmark labels for expert review; the sampling algorithm ensured that the selected studies were clinically relevant and captured a range of difficulty levels. Seventeen chest radiologists participated, and they marked "Agree all", "Agree mostly" or "Disagree" to indicate their assessment of the correctness of the LLM suggested labels. Each chest radiograph was evaluated by three experts. Of these, at least two radiologists selected "Agree All" for 381 radiographs. From this set, 200 were selected, prioritizing those with less common or multiple finding labels, and divided into 100 released radiographs and 100 reserved as the holdout dataset. The holdout dataset is used exclusively by RSNA to independently evaluate different models. A benchmark of 200 chest radiographic studies with 12 benchmark labels was created and made publicly available https://imaging.rsna.org, with each chest radiograph verified by three radiologists. In addition, an AI-assisted labeling procedure was developed to help radiologists label at scale, minimize unnecessary omissions, and support a semicollaborative environment.
Abstract:Randomized controlled trials (RCTs) are indispensable for establishing the clinical value of medical artificial-intelligence (AI) tools, yet their high cost and long timelines hinder timely validation as new models emerge rapidly. Here, we propose BRIDGE, a data-reuse RCT design for AI-based risk models. AI risk models support a broad range of interventions, including screening, treatment selection, and clinical alerts. BRIDGE trials recycle participant-level data from completed trials of AI models when legacy and updated models make concordant predictions, thereby reducing the enrollment requirement for subsequent trials. We provide a practical checklist for investigators to assess whether reusing data from previous trials allows for valid causal inference and preserves type I error. Using real-world datasets across breast cancer, cardiovascular disease, and sepsis, we demonstrate concordance between successive AI models, with up to 64.8% overlap in top 5% high-risk cohorts. We then simulate a series of breast cancer screening studies, where our design reduced required enrollment by 46.6%--saving over US$2.8 million--while maintaining 80% power. By transforming trials into adaptive, modular studies, our proposed design makes Level I evidence generation feasible for every model iteration, thereby accelerating cost-effective translation of AI into routine care.
Abstract:Efficiently modeling massive images is a long-standing challenge in machine learning. To this end, we introduce Multi-Scale Attention (MSA). MSA relies on two key ideas, (i) multi-scale representations (ii) bi-directional cross-scale communication. MSA creates O(log N) scales to represent the image across progressively coarser features and leverages cross-attention to propagate information across scales. We then introduce Atlas, a novel neural network architecture based on MSA. We demonstrate that Atlas significantly improves the compute-performance tradeoff of long-context image modeling in a high-resolution variant of ImageNet 100. At 1024px resolution, Atlas-B achieves 91.04% accuracy, comparable to ConvNext-B (91.92%) while being 4.3x faster. Atlas is 2.95x faster and 7.38% better than FasterViT, 2.25x faster and 4.96% better than LongViT. In comparisons against MambaVision-S, we find Atlas-S achieves 5%, 16% and 32% higher accuracy at 1024px, 2048px and 4096px respectively, while obtaining similar runtimes. Code for reproducing our experiments and pretrained models is available at https://github.com/yalalab/atlas.