Abstract:Classification of 3D point clouds is a challenging machine learning (ML) task with important real-world applications in a spectrum from autonomous driving and robot-assisted surgery to earth observation from low orbit. As with other ML tasks, classification models are notoriously brittle in the presence of adversarial attacks. These are rooted in imperceptible changes to inputs with the effect that a seemingly well-trained model ends up misclassifying the input. This paper adds to the understanding of adversarial attacks by presenting Eidos, a framework providing Efficient Imperceptible aDversarial attacks on 3D pOint cloudS. Eidos supports a diverse set of imperceptibility metrics. It employs an iterative, two-step procedure to identify optimal adversarial examples, thereby enabling a runtime-imperceptibility trade-off. We provide empirical evidence relative to several popular 3D point cloud classification models and several established 3D attack methods, showing Eidos' superiority with respect to efficiency as well as imperceptibility.
Abstract:In the realm of search systems, multi-stage cascade architecture is a prevalent method, typically consisting of sequential modules such as matching, pre-ranking, and ranking. It is generally acknowledged that the model used in the pre-ranking stage must strike a balance between efficacy and efficiency. Thus, the most commonly employed architecture is the representation-focused vector product based model. However, this architecture lacks effective interaction between the query and document, resulting in a reduction in the effectiveness of the search system. To address this issue, we present a novel pre-ranking framework called RankDFM. Our framework leverages DeepFM as the backbone and employs a pairwise training paradigm to learn the ranking of videos under a query. The capability of RankDFM to cross features provides significant improvement in offline and online A/B testing performance. Furthermore, we introduce a learnable feature selection scheme to optimize the model and reduce the time required for online inference, equivalent to a tree model. Currently, RankDFM has been deployed in the search system of a shortvideo App, providing daily services to hundreds of millions users.