Abstract:Expert search and team formation systems operate on collaboration networks, with nodes representing individuals, labeled with their skills, and edges denoting collaboration relationships. Given a keyword query corresponding to the desired skills, these systems identify experts that best match the query. However, state-of-the-art solutions to this problem lack transparency. To address this issue, we propose ExES, a tool designed to explain expert search and team formation systems using factual and counterfactual methods from the field of explainable artificial intelligence (XAI). ExES uses factual explanations to highlight important skills and collaborations, and counterfactual explanations to suggest new skills and collaborations to increase the likelihood of being identified as an expert. Towards a practical deployment as an interactive explanation tool, we present and experimentally evaluate a suite of pruning strategies to speed up the explanation search. In many cases, our pruning strategies make ExES an order of magnitude faster than exhaustive search, while still producing concise and actionable explanations.
Abstract:We present the Multi-Modal Discussion Transformer (mDT), a novel multi-modal graph-based transformer model for detecting hate speech in online social networks. In contrast to traditional text-only methods, our approach to labelling a comment as hate speech centers around the holistic analysis of text and images. This is done by leveraging graph transformers to capture the contextual relationships in the entire discussion that surrounds a comment, with interwoven fusion layers to combine text and image embeddings instead of processing different modalities separately. We compare the performance of our model to baselines that only process text; we also conduct extensive ablation studies. We conclude with future work for multimodal solutions to deliver social value in online contexts, arguing that capturing a holistic view of a conversation greatly advances the effort to detect anti-social behavior.
Abstract:Towards better explainability in the field of information retrieval, we present CREDENCE, an interactive tool capable of generating counterfactual explanations for document rankers. Embracing the unique properties of the ranking problem, we present counterfactual explanations in terms of document perturbations, query perturbations, and even other documents. Additionally, users may build and test their own perturbations, and extract insights about their query, documents, and ranker.
Abstract:Our work advances an approach for predicting hate speech in social media, drawing out the critical need to consider the discussions that follow a post to successfully detect when hateful discourse may arise. Using graph transformer networks, coupled with modelling attention and BERT-level natural language processing, our approach can capture context and anticipate upcoming anti-social behaviour. In this paper, we offer a detailed qualitative analysis of this solution for hate speech detection in social networks, leading to insights into where the method has the most impressive outcomes in comparison with competitors and identifying scenarios where there are challenges to achieving ideal performance. Included is an exploration of the kinds of posts that permeate social media today, including the use of hateful images. This suggests avenues for extending our model to be more comprehensive. A key insight is that the focus on reasoning about the concept of context positions us well to be able to support multi-modal analysis of online posts. We conclude with a reflection on how the problem we are addressing relates especially well to the theme of dynamic change, a critical concern for all AI solutions for social impact. We also comment briefly on how mental health well-being can be advanced with our work, through curated content attuned to the extent of hate in posts.
Abstract:We propose a system to predict harmful discussions on social media platforms. Our solution uses contextual deep language models and proposes the novel idea of integrating state-of-the-art Graph Transformer Networks to analyze all conversations that follow an initial post. This framework also supports adapting to future comments as the conversation unfolds. In addition, we study whether a community-specific analysis of hate speech leads to more effective detection of hateful discussions. We evaluate our approach on 333,487 Reddit discussions from various communities. We find that community-specific modeling improves performance two-fold and that models which capture wider-discussion context improve accuracy by 28\% (35\% for the most hateful content) compared to limited context models.
Abstract:A core issue in federated reinforcement learning is defining how to aggregate insights from multiple agents into one. This is commonly done by taking the average of each participating agent's model weights into one common model (FedAvg). We instead propose FedFormer, a novel federation strategy that utilizes Transformer Attention to contextually aggregate embeddings from models originating from different learner agents. In so doing, we attentively weigh contributions of other agents with respect to the current agent's environment and learned relationships, thus providing more effective and efficient federation. We evaluate our methods on the Meta-World environment and find that our approach yields significant improvements over FedAvg and non-federated Soft Actor Critique single agent methods. Our results compared to Soft Actor Critique show that FedFormer performs better while still abiding by the privacy constraints of federated learning. In addition, we demonstrate nearly linear improvements in effectiveness with increased agent pools in certain tasks. This is contrasted by FedAvg, which fails to make noticeable improvements when scaled.
Abstract:We propose GRS: an unsupervised approach to sentence simplification that combines text generation and text revision. We start with an iterative framework in which an input sentence is revised using explicit edit operations, and add paraphrasing as a new edit operation. This allows us to combine the advantages of generative and revision-based approaches: paraphrasing captures complex edit operations, and the use of explicit edit operations in an iterative manner provides controllability and interpretability. We demonstrate these advantages of GRS compared to existing methods on the Newsela and ASSET datasets.
Abstract:The Coronavirus pandemic created a global crisis that prompted immediate large-scale action, including economic shutdowns and mobility restrictions. These actions have had devastating effects on the economy, but some positive effects on the environment. As the world recovers from the pandemic, we ask the following question: What is the public attitude towards climate action during COVID-19 recovery and beyond? We answer this question by analyzing discussions on the Twitter social media platform. We find that most discussions support climate action and point out lessons learned during pandemic response that can shape future climate policy, although skeptics continue to have a presence. Additionally, concerns arise in the context of climate action during the pandemic, such as mitigating the risk of COVID-19 transmission on public transit.
Abstract:We present a novel iterative, edit-based approach to unsupervised sentence simplification. Our model is guided by a scoring function involving fluency, simplicity, and meaning preservation. Then, we iteratively perform word and phrase-level edits on the complex sentence. Compared with previous approaches, our model does not require a parallel training set, but is more controllable and interpretable. Experiments on Newsela and WikiLarge datasets show that our approach is nearly as effective as state-of-the-art supervised approaches.