Abstract:In reinforcement learning, specifying reward functions that capture the intended task can be very challenging. Reward learning aims to address this issue by learning the reward function. However, a learned reward model may have a low error on the training distribution, and yet subsequently produce a policy with large regret. We say that such a reward model has an error-regret mismatch. The main source of an error-regret mismatch is the distributional shift that commonly occurs during policy optimization. In this paper, we mathematically show that a sufficiently low expected test error of the reward model guarantees low worst-case regret, but that for any fixed expected test error, there exist realistic data distributions that allow for error-regret mismatch to occur. We then show that similar problems persist even when using policy regularization techniques, commonly employed in methods such as RLHF. Our theoretical results highlight the importance of developing new ways to measure the quality of learned reward models.
Abstract:If machine learning models were to achieve superhuman abilities at various reasoning or decision-making tasks, how would we go about evaluating such models, given that humans would necessarily be poor proxies for ground truth? In this paper, we propose a framework for evaluating superhuman models via consistency checks. Our premise is that while the correctness of superhuman decisions may be impossible to evaluate, we can still surface mistakes if the model's decisions fail to satisfy certain logical, human-interpretable rules. We instantiate our framework on three tasks where correctness of decisions is hard to evaluate due to either superhuman model abilities, or to otherwise missing ground truth: evaluating chess positions, forecasting future events, and making legal judgments. We show that regardless of a model's (possibly superhuman) performance on these tasks, we can discover logical inconsistencies in decision making. For example: a chess engine assigning opposing valuations to semantically identical boards; GPT-4 forecasting that sports records will evolve non-monotonically over time; or an AI judge assigning bail to a defendant only after we add a felony to their criminal record.