Abstract:Speech foundation models, trained on vast datasets, have opened unique opportunities in addressing challenging low-resource speech understanding, such as child speech. In this work, we explore the capabilities of speech foundation models on child-adult speaker diarization. We show that exemplary foundation models can achieve 39.5% and 62.3% relative reductions in Diarization Error Rate and Speaker Confusion Rate, respectively, compared to previous speaker diarization methods. In addition, we benchmark and evaluate the speaker diarization results of the speech foundation models with varying the input audio window size, speaker demographics, and training data ratio. Our results highlight promising pathways for understanding and adopting speech foundation models to facilitate child speech understanding.
Abstract:Speech processing techniques are useful for analyzing speech and language development in children with Autism Spectrum Disorder (ASD), who are often varied and delayed in acquiring these skills. Early identification and intervention are crucial, but traditional assessment methodologies such as caregiver reports are not adequate for the requisite behavioral phenotyping. Natural Language Sample (NLS) analysis has gained attention as a promising complement. Researchers have developed benchmarks for spoken language capabilities in children with ASD, obtainable through the analysis of NLS. This paper proposes applications of speech processing technologies in support of automated assessment of children's spoken language development by classification between child and adult speech and between speech and nonverbal vocalization in NLS, with respective F1 macro scores of 82.6% and 67.8%, underscoring the potential for accurate and scalable tools for ASD research and clinical use.