Abstract:In this paper, we introduce a high-quality and large-scale benchmark dataset for English-Vietnamese speech translation with 508 audio hours, consisting of 331K triplets of (sentence-lengthed audio, English source transcript sentence, Vietnamese target subtitle sentence). We also conduct empirical experiments using strong baselines and find that the traditional "Cascaded" approach still outperforms the modern "End-to-End" approach. To the best of our knowledge, this is the first large-scale English-Vietnamese speech translation study. We hope both our publicly available dataset and study can serve as a starting point for future research and applications on English-Vietnamese speech translation. Our dataset is available at https://github.com/VinAIResearch/PhoST
Abstract:We introduce a high-quality and large-scale Vietnamese-English parallel dataset of 3.02M sentence pairs, which is 2.9M pairs larger than the benchmark Vietnamese-English machine translation corpus IWSLT15. We conduct experiments comparing strong neural baselines and well-known automatic translation engines on our dataset and find that in both automatic and human evaluations: the best performance is obtained by fine-tuning the pre-trained sequence-to-sequence denoising auto-encoder mBART. To our best knowledge, this is the first large-scale Vietnamese-English machine translation study. We hope our publicly available dataset and study can serve as a starting point for future research and applications on Vietnamese-English machine translation.
Abstract:In this paper, we provide an overview of the WNUT-2020 shared task on the identification of informative COVID-19 English Tweets. We describe how we construct a corpus of 10K Tweets and organize the development and evaluation phases for this task. In addition, we also present a brief summary of results obtained from the final system evaluation submissions of 55 teams, finding that (i) many systems obtain very high performance, up to 0.91 F1 score, (ii) the majority of the submissions achieve substantially higher results than the baseline fastText (Joulin et al., 2017), and (iii) fine-tuning pre-trained language models on relevant language data followed by supervised training performs well in this task.