Abstract:In this work, we focus on Interactive Human Parsing (IHP), which aims to segment a human image into multiple human body parts with guidance from users' interactions. This new task inherits the class-aware property of human parsing, which cannot be well solved by traditional interactive image segmentation approaches that are generally class-agnostic. To tackle this new task, we first exploit user clicks to identify different human parts in the given image. These clicks are subsequently transformed into semantic-aware localization maps, which are concatenated with the RGB image to form the input of the segmentation network and generate the initial parsing result. To enable the network to better perceive user's purpose during the correction process, we investigate several principal ways for the refinement, and reveal that random-sampling-based click augmentation is the best way for promoting the correction effectiveness. Furthermore, we also propose a semantic-perceiving loss (SP-loss) to augment the training, which can effectively exploit the semantic relationships of clicks for better optimization. To the best knowledge, this work is the first attempt to tackle the human parsing task under the interactive setting. Our IHP solution achieves 85\% mIoU on the benchmark LIP, 80\% mIoU on PASCAL-Person-Part and CIHP, 75\% mIoU on Helen with only 1.95, 3.02, 2.84 and 1.09 clicks per class respectively. These results demonstrate that we can simply acquire high-quality human parsing masks with only a few human effort. We hope this work can motivate more researchers to develop data-efficient solutions to IHP in the future.
Abstract:With the aim of matching a pair of instances from two different modalities, cross modality mapping has attracted growing attention in the computer vision community. Existing methods usually formulate the mapping function as the similarity measure between the pair of instance features, which are embedded to a common space. However, we observe that the relationships among the instances within a single modality (intra relations) and those between the pair of heterogeneous instances (inter relations) are insufficiently explored in previous approaches. Motivated by this, we redefine the mapping function with relational reasoning via graph modeling, and further propose a GCN-based Relational Reasoning Network (RR-Net) in which inter and intra relations are efficiently computed to universally resolve the cross modality mapping problem. Concretely, we first construct two kinds of graph, i.e., Intra Graph and Inter Graph, to respectively model intra relations and inter relations. Then RR-Net updates all the node features and edge features in an iterative manner for learning intra and inter relations simultaneously. Last, RR-Net outputs the probabilities over the edges which link a pair of heterogeneous instances to estimate the mapping results. Extensive experiments on three example tasks, i.e., image classification, social recommendation and sound recognition, clearly demonstrate the superiority and universality of our proposed model.