Abstract:In this paper, we propose Img2CAD, the first approach to our knowledge that uses 2D image inputs to generate CAD models with editable parameters. Unlike existing AI methods for 3D model generation using text or image inputs often rely on mesh-based representations, which are incompatible with CAD tools and lack editability and fine control, Img2CAD enables seamless integration between AI-based 3D reconstruction and CAD software. We have identified an innovative intermediate representation called Structured Visual Geometry (SVG), characterized by vectorized wireframes extracted from objects. This representation significantly enhances the performance of generating conditioned CAD models. Additionally, we introduce two new datasets to further support research in this area: ABC-mono, the largest known dataset comprising over 200,000 3D CAD models with rendered images, and KOCAD, the first dataset featuring real-world captured objects alongside their ground truth CAD models, supporting further research in conditioned CAD model generation.
Abstract:Combinational creativity, a form of creativity involving the blending of familiar ideas, is pivotal in design innovation. While most research focuses on how combinational creativity in design is achieved through blending elements, this study focuses on the computational interpretation, specifically identifying the 'base' and 'additive' components that constitute a creative design. To achieve this goal, the authors propose a heuristic algorithm integrating computer vision and natural language processing technologies, and implement multiple approaches based on both discriminative and generative artificial intelligence architectures. A comprehensive evaluation was conducted on a dataset created for studying combinational creativity. Among the implementations of the proposed algorithm, the most effective approach demonstrated a high accuracy in interpretation, achieving 87.5% for identifying 'base' and 80% for 'additive'. We conduct a modular analysis and an ablation experiment to assess the performance of each part in our implementations. Additionally, the study includes an analysis of error cases and bottleneck issues, providing critical insights into the limitations and challenges inherent in the computational interpretation of creative designs.