Abstract:Time series forecasting (TSF) is immensely important in extensive applications, such as electricity transformation, financial trade, medical monitoring, and smart agriculture. Although Transformer-based methods can handle time series data, their ability to predict long-term time series is limited due to the ``anti-order" nature of the self-attention mechanism. To address this problem, we focus on frequency domain to weaken the impact of order in TSF and propose the FreqBlock, where we first obtain frequency representations through the Frequency Transform Module. Subsequently, a newly designed Frequency Cross Attention is used to obtian enhanced frequency representations between the real and imaginary parts, thus establishing a link between the attention mechanism and the inherent Kramer-Kronig relations (KKRs). Our backbone network, FreqTSF, adopts a residual structure by concatenating multiple FreqBlocks to simulate KKRs in the frequency domain and avoid degradation problems. On a theoretical level, we demonstrate that the proposed two modules can significantly reduce the time and memory complexity from $\mathcal{O}(L^2)$ to $\mathcal{O}(L)$ for each FreqBlock computation. Empirical studies on four benchmark datasets show that FreqTSF achieves an overall relative MSE reduction of 15\% and an overall relative MAE reduction of 11\% compared to the state-of-the-art methods. The code will be available soon.
Abstract:Imagining potential outcomes of actions before execution helps agents make more informed decisions, a prospective thinking ability fundamental to human cognition. However, mainstream model-free Reinforcement Learning (RL) methods lack the ability to proactively envision future scenarios, plan, and guide strategies. These methods typically rely on trial and error to adjust policy functions, aiming to maximize cumulative rewards or long-term value, even if such high-reward decisions place the environment in extremely dangerous states. To address this, we propose the Prospective (ProSpec) RL method, which makes higher-value, lower-risk optimal decisions by imagining future n-stream trajectories. Specifically, ProSpec employs a dynamic model to predict future states (termed "imagined states") based on the current state and a series of sampled actions. Furthermore, we integrate the concept of Model Predictive Control and introduce a cycle consistency constraint that allows the agent to evaluate and select the optimal actions from these trajectories. Moreover, ProSpec employs cycle consistency to mitigate two fundamental issues in RL: augmenting state reversibility to avoid irreversible events (low risk) and augmenting actions to generate numerous virtual trajectories, thereby improving data efficiency. We validated the effectiveness of our method on the DMControl benchmarks, where our approach achieved significant performance improvements. Code will be open-sourced upon acceptance.
Abstract:As a unique and promising biometric, video-based gait recognition has broad applications. The key step of this methodology is to learn the walking pattern of individuals, which, however, often suffers challenges to extract the behavioral feature from a sequence directly. Most existing methods just focus on either the appearance or the motion pattern. To overcome these limitations, we propose a sequential convolutional network (SCN) from a novel perspective, where spatiotemporal features can be learned by a basic convolutional backbone. In SCN, behavioral information extractors (BIE) are constructed to comprehend intermediate feature maps in time series through motion templates where the relationship between frames can be analyzed, thereby distilling the information of the walking pattern. Furthermore, a multi-frame aggregator in SCN performs feature integration on a sequence whose length is uncertain, via a mobile 3D convolutional layer. To demonstrate the effectiveness, experiments have been conducted on two popular public benchmarks, CASIA-B and OU-MVLP, and our approach is demonstrated superior performance, comparing with the state-of-art methods.