Abstract:Large datasets often contain multiple distinct feature sets, or views, that offer complementary information that can be exploited by multi-view learning methods to improve results. We investigate anatomical multi-view data, where each brain anatomical structure is described with multiple feature sets. In particular, we focus on sets of white matter microstructure and connectivity features from diffusion MRI, as well as sets of gray matter area and thickness features from structural MRI. We investigate machine learning methodology that applies multi-view approaches to improve the prediction of non-imaging phenotypes, including demographics (age), motor (strength), and cognition (picture vocabulary). We present an explainable multi-view network (EMV-Net) that can use different anatomical views to improve prediction performance. In this network, each individual anatomical view is processed by a view-specific feature extractor and the extracted information from each view is fused using a learnable weight. This is followed by a wavelet transform-based module to obtain complementary information across views which is then applied to calibrate the view-specific information. Additionally, the calibrator produces an attention-based calibration score to indicate anatomical structures' importance for interpretation.
Abstract:Neuroimaging measures of the brain's white matter connections can enable the prediction of non-imaging phenotypes, such as demographic and cognitive measures. Existing works have investigated traditional microstructure and connectivity measures from diffusion MRI tractography, without considering the shape of the connections reconstructed by tractography. In this paper, we investigate the potential of fiber tract shape features for predicting non-imaging phenotypes, both individually and in combination with traditional features. We focus on three basic shape features: length, diameter, and elongation. Two different prediction methods are used, including a traditional regression method and a deep-learning-based prediction method. Experiments use an efficient two-stage fusion strategy for prediction using microstructure, connectivity, and shape measures. To reduce predictive bias due to brain size, normalized shape features are also investigated. Experimental results on the Human Connectome Project (HCP) young adult dataset (n=1065) demonstrate that individual shape features are predictive of non-imaging phenotypes. When combined with microstructure and connectivity features, shape features significantly improve performance for predicting the cognitive score TPVT (NIH Toolbox picture vocabulary test). Overall, this study demonstrates that the shape of fiber tracts contains useful information for the description and study of the living human brain using machine learning.