Abstract:This paper introduces a collaborative, human-centered taxonomy of AI, algorithmic and automation harms. We argue that existing taxonomies, while valuable, can be narrow, unclear, typically cater to practitioners and government, and often overlook the needs of the wider public. Drawing on existing taxonomies and a large repository of documented incidents, we propose a taxonomy that is clear and understandable to a broad set of audiences, as well as being flexible, extensible, and interoperable. Through iterative refinement with topic experts and crowdsourced annotation testing, we propose a taxonomy that can serve as a powerful tool for civil society organisations, educators, policymakers, product teams and the general public. By fostering a greater understanding of the real-world harms of AI and related technologies, we aim to increase understanding, empower NGOs and individuals to identify and report violations, inform policy discussions, and encourage responsible technology development and deployment.
Abstract:In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic components, a new sub-area has emerged that focuses on combining machine learning (ML) components with techniques developed by the Semantic Web (SW) community - Semantic Web Machine Learning (SWeML for short). Due to its rapid growth and impact on several communities in the last two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Yet, surveys that adopt principled and unbiased approaches are missing. To fill this gap, we performed a systematic study and analyzed nearly 500 papers published in the last decade in this area, where we focused on evaluating architectural, and application-specific features. Our analysis identified a rapidly growing interest in SWeML Systems, with a high impact on several application domains and tasks. Catalysts for this rapid growth are the increased application of deep learning and knowledge graph technologies. By leveraging the in-depth understanding of this area acquired through this study, a further key contribution of this paper is a classification system for SWeML Systems which we publish as ontology.