Abstract:To improve relevance scoring on Pinterest Search, we integrate Large Language Models (LLMs) into our search relevance model, leveraging carefully designed text representations to predict the relevance of Pins effectively. Our approach uses search queries alongside content representations that include captions extracted from a generative visual language model. These are further enriched with link-based text data, historically high-quality engaged queries, user-curated boards, Pin titles and Pin descriptions, creating robust models for predicting search relevance. We use a semi-supervised learning approach to efficiently scale up the amount of training data, expanding beyond the expensive human labeled data available. By utilizing multilingual LLMs, our system extends training data to include unseen languages and domains, despite initial data and annotator expertise being confined to English. Furthermore, we distill from the LLM-based model into real-time servable model architectures and features. We provide comprehensive offline experimental validation for our proposed techniques and demonstrate the gains achieved through the final deployed system at scale.
Abstract:In this paper, we present OmniSearchSage, a versatile and scalable system for understanding search queries, pins, and products for Pinterest search. We jointly learn a unified query embedding coupled with pin and product embeddings, leading to an improvement of $>8\%$ relevance, $>7\%$ engagement, and $>5\%$ ads CTR in Pinterest's production search system. The main contributors to these gains are improved content understanding, better multi-task learning, and real-time serving. We enrich our entity representations using diverse text derived from image captions from a generative LLM, historical engagement, and user-curated boards. Our multitask learning setup produces a single search query embedding in the same space as pin and product embeddings and compatible with pre-existing pin and product embeddings. We show the value of each feature through ablation studies, and show the effectiveness of a unified model compared to standalone counterparts. Finally, we share how these embeddings have been deployed across the Pinterest search stack, from retrieval to ranking, scaling to serve $300k$ requests per second at low latency. Our implementation of this work is available at https://github.com/pinterest/atg-research/tree/main/omnisearchsage.