Abstract:Image quantization is a crucial technique in image generation, aimed at learning a codebook that encodes an image into a discrete token sequence. Recent advancements have seen researchers exploring learning multi-modal codebook (i.e., text-aligned codebook) by utilizing image caption semantics, aiming to enhance codebook performance in cross-modal tasks. However, existing image-text paired datasets exhibit a notable flaw in that the text descriptions tend to be overly concise, failing to adequately describe the images and provide sufficient semantic knowledge, resulting in limited alignment of text and codebook at a fine-grained level. In this paper, we propose a novel Text-Augmented Codebook Learning framework, named TA-VQ, which generates longer text for each image using the visual-language model for improved text-aligned codebook learning. However, the long text presents two key challenges: how to encode text and how to align codebook and text. To tackle two challenges, we propose to split the long text into multiple granularities for encoding, i.e., word, phrase, and sentence, so that the long text can be fully encoded without losing any key semantic knowledge. Following this, a hierarchical encoder and novel sampling-based alignment strategy are designed to achieve fine-grained codebook-text alignment. Additionally, our method can be seamlessly integrated into existing VQ models. Extensive experiments in reconstruction and various downstream tasks demonstrate its effectiveness compared to previous state-of-the-art approaches.
Abstract:Vector quantization (VQ) is a key technique in high-resolution and high-fidelity image synthesis, which aims to learn a codebook to encode an image with a sequence of discrete codes and then generate an image in an auto-regression manner. Although existing methods have shown superior performance, most methods prefer to learn a single-modal codebook (\emph{e.g.}, image), resulting in suboptimal performance when the codebook is applied to multi-modal downstream tasks (\emph{e.g.}, text-to-image, image captioning) due to the existence of modal gaps. In this paper, we propose a novel language-guided codebook learning framework, called LG-VQ, which aims to learn a codebook that can be aligned with the text to improve the performance of multi-modal downstream tasks. Specifically, we first introduce pre-trained text semantics as prior knowledge, then design two novel alignment modules (\emph{i.e.}, Semantic Alignment Module, and Relationship Alignment Module) to transfer such prior knowledge into codes for achieving codebook text alignment. In particular, our LG-VQ method is model-agnostic, which can be easily integrated into existing VQ models. Experimental results show that our method achieves superior performance on reconstruction and various multi-modal downstream tasks.