Abstract:We introduce the \`{I}r\`{o}y\`{i}nSpeech corpus -- a new dataset influenced by a desire to increase the amount of high quality, freely available, contemporary Yor\`{u}b\'{a} speech. We release a multi-purpose dataset that can be used for both TTS and ASR tasks. We curated text sentences from the news and creative writing domains under an open license i.e., CC-BY-4.0 and had multiple speakers record each sentence. We provide 5000 of our utterances to the Common Voice platform to crowdsource transcriptions online. The dataset has 38.5 hours of data in total, recorded by 80 volunteers.
Abstract:Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology.