Abstract:In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.
Abstract:The exponential growth in the number of complex datasets every year requires more enhancement in machine learning methods to provide robust and accurate data classification. Lately, deep learning approaches have achieved surpassing results in comparison to previous machine learning algorithms. However, finding the suitable structure for these models has been a challenge for researchers. This paper introduces Random Multimodel Deep Learning (RMDL): a new ensemble, deep learning approach for classification. RMDL solves the problem of finding the best deep learning structure and architecture while simultaneously improving robustness and accuracy through ensembles of deep learning architectures. In short, RMDL trains multiple randomly generated models of Deep Neural Network (DNN), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in parallel and combines their results to produce better result of any of those models individually. In this paper, we describe RMDL model and compare the results for image and text classification as well as face recognition. We used MNIST and CIFAR-10 datasets as ground truth datasets for image classification and WOS, Reuters, IMDB, and 20newsgroup datasets for text classification. Lastly, we used ORL dataset to compare the model performance on face recognition task.
Abstract:The continually increasing number of complex datasets each year necessitates ever improving machine learning methods for robust and accurate categorization of these data. This paper introduces Random Multimodel Deep Learning (RMDL): a new ensemble, deep learning approach for classification. Deep learning models have achieved state-of-the-art results across many domains. RMDL solves the problem of finding the best deep learning structure and architecture while simultaneously improving robustness and accuracy through ensembles of deep learning architectures. RDML can accept as input a variety data to include text, video, images, and symbolic. This paper describes RMDL and shows test results for image and text data including MNIST, CIFAR-10, WOS, Reuters, IMDB, and 20newsgroup. These test results show that RDML produces consistently better performance than standard methods over a broad range of data types and classification problems.
Abstract:The continually increasing number of documents produced each year necessitates ever improving information processing methods for searching, retrieving, and organizing text. Central to these information processing methods is document classification, which has become an important application for supervised learning. Recently the performance of these traditional classifiers has degraded as the number of documents has increased. This is because along with this growth in the number of documents has come an increase in the number of categories. This paper approaches this problem differently from current document classification methods that view the problem as multi-class classification. Instead we perform hierarchical classification using an approach we call Hierarchical Deep Learning for Text classification (HDLTex). HDLTex employs stacks of deep learning architectures to provide specialized understanding at each level of the document hierarchy.