Abstract:Rapid renovation of Europe's inefficient buildings is required to reduce climate change. However, analyzing and evaluating buildings at scale is challenging because every building is unique. In current practice, the energy performance of buildings is assessed during on-site visits, which are slow, costly, and local. This paper presents a building point cloud dataset that promotes a data-driven, large-scale understanding of the 3D representation of buildings and their energy characteristics. We generate building point clouds by intersecting building footprints with geo-referenced LiDAR data and link them with attributes from UK's energy performance database via the Unique Property Reference Number (UPRN). To achieve a representative sample, we select one million buildings from a range of rural and urban regions across England, of which half a million are linked to energy characteristics. Building point clouds in new regions can be generated with the open-source code published alongside the paper. The dataset enables novel research in building energy modeling and can be easily expanded to other research fields by adding building features via the UPRN or geo-location.
Abstract:In the race towards carbon neutrality, the building sector has fallen behind and bears the potential to endanger the progress made across other industries. This is because buildings exhibit a life span of several decades which creates substantial inertia in the face of climate change. This inertia is further exacerbated by the scale of the existing building stock. With several billion operational buildings around the globe, working towards a carbon-neutral building sector requires solutions which enable stakeholders to accurately identify and retrofit subpar buildings at scale. However, improving the energy efficiency of the existing building stock through retrofits in a targeted and efficient way remains challenging. This is because, as of today, the energy efficiency of buildings is generally determined by on-site visits of certified energy auditors which makes the process slow, costly, and geographically incomplete. In order to accelerate the identification of promising retrofit targets, this work proposes a new method which can estimate a building's energy efficiency using purely remotely sensed data such as street view and aerial imagery, OSM-derived footprint areas, and satellite-borne land surface temperature (LST) measurements. We find that in the binary setting of distinguishing efficient from inefficient buildings, our end-to-end deep learning model achieves a macro-averaged F1-score of 62.06\%. As such, this work shows the potential and complementary nature of remotely sensed data in predicting building attributes such as energy efficiency and opens up new opportunities for future work to integrate additional data sources.
Abstract:While photovoltaic (PV) systems are installed at an unprecedented rate, reliable information on an installation level remains scarce. As a result, automatically created PV registries are a timely contribution to optimize grid planning and operations. This paper demonstrates how aerial imagery and three-dimensional building data can be combined to create an address-level PV registry, specifying area, tilt, and orientation angles. We demonstrate the benefits of this approach for PV capacity estimation. In addition, this work presents, for the first time, a comparison between automated and officially-created PV registries. Our results indicate that our enriched automated registry proves to be useful to validate, update, and complement official registries.