Abstract:Deep learning based visual trackers entail offline pre-training on large volumes of video datasets with accurate bounding box annotations that are labor-expensive to achieve. We present a new framework to facilitate bounding box annotations for video sequences, which investigates a selection-and-refinement strategy to automatically improve the preliminary annotations generated by tracking algorithms. A temporal assessment network (T-Assess Net) is proposed which is able to capture the temporal coherence of target locations and select reliable tracking results by measuring their quality. Meanwhile, a visual-geometry refinement network (VG-Refine Net) is also designed to further enhance the selected tracking results by considering both target appearance and temporal geometry constraints, allowing inaccurate tracking results to be corrected. The combination of the above two networks provides a principled approach to ensure the quality of automatic video annotation. Experiments on large scale tracking benchmarks demonstrate that our method can deliver highly accurate bounding box annotations and significantly reduce human labor by 94.0%, yielding an effective means to further boost tracking performance with augmented training data.
Abstract:Long-term visual tracking has drawn increasing attention because it is much closer to practical applications than short-term tracking. Most top-ranked long-term trackers adopt the offline-trained Siamese architectures, thus, they cannot benefit from great progress of short-term trackers with online update. However, it is quite risky to straightforwardly introduce online-update-based trackers to solve the long-term problem, due to long-term uncertain and noisy observations. In this work, we propose a novel offline-trained Meta-Updater to address an important but unsolved problem: Is the tracker ready for updating in the current frame? The proposed meta-updater can effectively integrate geometric, discriminative, and appearance cues in a sequential manner, and then mine the sequential information with a designed cascaded LSTM module. Our meta-updater learns a binary output to guide the tracker's update and can be easily embedded into different trackers. This work also introduces a long-term tracking framework consisting of an online local tracker, an online verifier, a SiamRPN-based re-detector, and our meta-updater. Numerous experimental results on the VOT2018LT, VOT2019LT, OxUvALT, TLP, and LaSOT benchmarks show that our tracker performs remarkably better than other competing algorithms. Our project is available on the website: https://github.com/Daikenan/LTMU.