Abstract:Multimodal sentiment analysis enhances conventional sentiment analysis, which traditionally relies solely on text, by incorporating information from different modalities such as images, text, and audio. This paper proposes a novel multimodal sentiment analysis architecture that integrates text and image data to provide a more comprehensive understanding of sentiments. For text feature extraction, we utilize BERT, a natural language processing model. For image feature extraction, we employ DINOv2, a vision-transformer-based model. The textual and visual latent features are integrated using proposed fusion techniques, namely the Basic Fusion Model, Self Attention Fusion Model, and Dual Attention Fusion Model. Experiments on three datasets, Memotion 7k dataset, MVSA single dataset, and MVSA multi dataset, demonstrate the viability and practicality of the proposed multimodal architecture.
Abstract:Machine learning systems are vulnerable to backdoor attacks, where attackers manipulate model behavior through data tampering or architectural modifications. Traditional backdoor attacks involve injecting malicious samples with specific triggers into the training data, causing the model to produce targeted incorrect outputs in the presence of the corresponding triggers. More sophisticated attacks modify the model's architecture directly, embedding backdoors that are harder to detect as they evade traditional data-based detection methods. However, the drawback of the architectural modification based backdoor attacks is that the trigger must be visible in order to activate the backdoor. To further strengthen the invisibility of the backdoor attacks, a novel backdoor attack method is presented in the paper. To be more specific, this method embeds the backdoor within the model's architecture and has the capability to generate inconspicuous and stealthy triggers. The attack is implemented by modifying pre-trained models, which are then redistributed, thereby posing a potential threat to unsuspecting users. Comprehensive experiments conducted on standard computer vision benchmarks validate the effectiveness of this attack and highlight the stealthiness of its triggers, which remain undetectable through both manual visual inspection and advanced detection tools.